૭tec

we control
your comfort
general catalogue
2024

Company

Eatec srl was founded in 2012 through the collaboration of experts with many years of experience in the heating, ventilation, air-conditioning and refrigeration field.

We are paying constant attention to the needs of national and international markets. Eatec stands for its innovative and dynamic approach to its offer and for its great flexibility with which it approaches the market and adapts
 to specific customer needs. Thanks to its long experience in the HVAC/R field, Eatec has successfully introduced new product lines, placing the company at excellent Italian and international standard.

Mission

We control your comfort summarizes effectively the principles and the values of the company's mission: quality, satisfaction, customer care and service, but also professionalism, dynamism, flexibility to adapt to every need and, above all, constant attention to markets and innovative products.

The customers' needs and benefits stay in the foreground when it comes to quality and partnership. Our value system towards the employees, customers and suppliers places human beings in the focus of the organization.
"I believe in strong teamwork and play to win"
(Elke de Biase, General Manager)

References

Discover some of the most important projects that Eatec has carried out together with its customers in Italy and around the world.

Cast Alimenti BRESCIA

Old Wild West ITALIA

LSG Skychefs, Lavaggio e Plonge FIUMICINO

Sun City Resort SOUTH AFRICA

Università Nicolò Cusano ROMA

Hospital South Gai Gon VIETNAM

Centrali Telecom ITALIA

Palazzo Hyundai MILANO

Università degli Studi PESCARA

Ipermercato Conad FRASCATI

Centre Hospitalier du Sud Seine et Marne a Fontainebleau FRANCE

Türkan Villa Project BAKU AZERBAIJAN

Centro Snam RAGUSA

Linklaters
LONDON

Hellenic Coast Guard PIRAEUS

STMicroelectronics AGRATE

Medical diagnostic Center KRASNODAR

Regional Children's Clinical Hospital TAMBOV

Agenzia delle Entrate ROMA

Ospedale S. Andrea ROMA

Jebel Ali DUBAI

Carrefour VARSAVIA

SmartRoad 2021 ALEMAGNA "BELLUNO-CORTINA"

Amazon Logistics
VARESE, CATANIA, TORINO, PESCARA

Kernkraftwerk Biblis WORMS

Royal Caribbean International Fleet MIAMI

Holiday Inn MESTRE

Studentato Stonehill BOLOGNA

Ipermercato Conad VELLETRI

[^0]
0 .
 000

redline
thermostats

Description

The frost protection thermostat serie TD is suitable for the protection of hot-water heating registers, downstream air heaters in ventilation and climate control systems as well as heat exchangers in cooling systems. The thermostats can also be used to control electrical heating systems and to switch acoustic or optical alarm signals and measure temperature in non aggressive gases or liquid medium.

Technical specifications

Measurement range
Factory calibration
Differential
Electrical rating
Reset

Sensibile element
Cable entry
Housing
Wiring terminals
Cooling of capillary coil

Max. overload temperature
Dimensions
Protection type
Protection class
Working range RH
Working temperature ${ }^{\circ} \mathrm{C}$
Storage temperature
Accessories (optionally)
Installation
Standards
$-15 \ldots+15^{\circ} \mathrm{C}$
on $5^{\circ} \mathrm{C}$, off $0^{\circ} \mathrm{C}$
adjustable from 1 to $15^{\circ} \mathrm{C}$

8 A, 250 V AC
Automatic, the switiching contact moves back to its normal position if temperature moves to normal range. Manual, the switching contact is moved back by pressing the reset button on the housing.

Gas-filled copper capillary
Cable gland Ø $6 \ldots 13 \mathrm{~mm}$
Metal base with ABS cover
Screw terminals for wires of up to $1,5 \mathrm{~mm}^{2}$ cross-section
The 3 and 6 m capillaries are sensitive over the entire length and detect, with a minimum length of 30 cm , a temperature change from the set point. The $1,8 \mathrm{~m}$ capillary is only sensitive on the bulb.
$150^{\circ} \mathrm{C}$ (max. 1 hour)
See drawing
IP55
I
5...95\% RH, non-condensing
$-20 \ldots+55^{\circ} \mathrm{C}$
$-30 \ldots+60^{\circ} \mathrm{C}$
Set of 6 pieces mounting brackets, model ATD1
See drawing
CE-conformity, RoHS

Models	Reset	Capillary length \mathbf{m}
TD1	automatic	1,8
TD2	automatic	3,0
TD3	automatic	6,0
TDR1	manual	1,8
TDR2	manual	3,0
TDR3	manual	6,0
Accessories:	ATD1 Set of 6 pieces mounting brackets	

Electrical wirings

(1) Common
(1)-(3) Close on temperature rise
(1)-(5) Close on temperature drop

M Manual reset

Function

The frost protection thermostat switches when the temperature sensed by capillary for a minimum length of 30 cm drops below the temperature set on the knob. When temperature increases, the contact returns automatically to the initial position. For TDR versions it is necessary a manual reset from user to allow the contact to return to the initial position.
The gas inside the sensible element increases his volume and with a mechanism acts on the microswitch. The capillary is sensible to temperature for the whole length.

Installation

The thermostat is available with 3 different sensible elements that allow the use in different applications.
The version with $1,8 \mathrm{~m}$ capillary lenght has a bulb that allows the use of a pocket.
The versions with 3 and 6 m can be used in air ducts or battery exchanger.
The capillary must be applied uniformly on the surface to be controlled, see drawing besides.
This surface must not be folded with a radius of curvature lower than 20 mm and there must not be any bottlenecks. Therefore the use with mounting bracket model ATD1 is recommended.
In addition avoid to put the capillary across iron plate wall without any protection.
The room temperature around the unit must never be below the setpoint temperature.

Dimensions (mm)

Mounting bracket, model ATD1

Description

The room thermostat TAM, designed simply and elegant, combines simplicity of operation and use with ease of installation.

Technical specifications

Measurement range	$10 \ldots+30^{\circ} \mathrm{C}$
Differential	$<0,7^{\circ} \mathrm{K}$
Electrical rating	$10(2) \mathrm{A}, 250 \mathrm{VAC}$
Min. current	200 mA
Max. temperature	$0 \ldots+50^{\circ} \mathrm{C}$
Protection	IP 30
Dimensions	$84 \times 84 \times 36 \mathrm{~mm}$
Standards	$\mathrm{CE}-$ conformity

Models	Power supply	Features
TAM31	$230 \mathrm{Vac} / 24 \mathrm{Vac}$	Basic version, changeover contact
TAM32	230 Vac	with LED for closed contact
TAM33	230 Vac	with LED for closed contact and on/off switch
TAM34	230 Vac	with LED for closed contact and summer/winter switch
TAM42	24 Vac	with LED for closed contact
TAM43	24 Vac	with LED for closed contact and on/off switch
TAM44	24 Vac	with LED for closed contact and summer/winter switch

Electrical wirings

TAM31

TAM32 - TAM42

TAM33 - TAM43

TAM34 - TAM44

Installation

WARNING! The installation described below must be carried out by qualified personnel observing the safety rules and regulations in force.
Verify that the data plate (power supply, contact, etc.) are suitable to the installation conditions. Make sure that the thermostat is not affected by drafts, direct sunlight or other heat sources (Fig. 1). Install the thermostat on a flat surface. If the device is mounted on a metal surface to ensure that the same are properly grounded.

1. Loosen the screw on the lid, then remove the cover and knob .

DO NOT EVER TURN THE SHAFT OF THE KNOB: THE THERMOSTAT CAN LOOSE THE SETTING.
2 . Secure the device to the wall using screws
3 . Make the electrical connections using the appropriate terminals according to the corresponding electrical wiring above.
4 . Replace the knob and the cover by tightening the screw.

Dimensions (mm)

Description

The industrial room thermostat TA is suitable for temperature control in industrial rooms such as greenhouses, industrial buildings, warehouses etc.

Technical specifications

Measurement range

Tolerance

Differential
Electrical rating
Max. temperature
Protection
Isolation class
Overvoltage category
Nominal impulse voltage
Bulb
Dimensions
Standards
see schedule
$\pm 3^{\circ} \mathrm{C}$
$2 \pm 1^{\circ} \mathrm{C}$
16 (4) A, 250 V AC
$+70^{\circ} \mathrm{C}$
IP55
I
II
4 kV
Spiral capillary in stainless steel
$97 \times 120 \times 56 \mathrm{~mm}$
CE-conformity

Models	Range ${ }^{\circ} \mathbf{C}$	External knob	Internal knob
TA1	$-15 \ldots+40$	\bullet	
TA2	$0 \ldots+60$	\bullet	
TA2S	$0 \ldots+60$		\bullet
TA3	$0 \ldots+40$	\bullet	
TA3S	$0 \ldots+40$		\bullet

Electrical wirings

Dimensions (mm)

Description

The electromechnical capillary thermostat TK, three available ranges, is suitable for most of temperature control requirements for heating and cooling applications. The thermostats are available with external, internal range knob and with fix temperature calibration.

Technical specifications

Measurement range Differential

Tolerance
Electrical rating
Max. housing temperature
Max. bulb temperature
Temperature gradient
Isolation class
Overvoltage category
Nominal impulse voltage
Dimensions
Standards
see schedule
see schedule
Min. temp. $\pm 5^{\circ} \mathrm{C}$, min. temp. $\pm 3^{\circ} \mathrm{C}$
16 (4) A, 250 V AC - 6 (1) A, 400 V AC
T 85
T 120
$1^{\circ} \mathrm{C} / \mathrm{min}$
I
II
4 kV
$84 \times 84 \times 36 \mathrm{~mm}$
CE-conformity

Models	Range ${ }^{\circ} \mathrm{C}$	Protection (*)	Differential	Internal knob	External knob	Reset	Capillary length mm
TK1	0...+60	IP43	$3 \pm 1^{\circ} \mathrm{C}$		-		1000
TK1S	0...+60	IP55	$3 \pm 1^{\circ} \mathrm{C}$	-			1000
TK2	0...+90	IP43	$4 \pm 2^{\circ} \mathrm{C}$		-		1000
TK2S	0...+90	IP55	$4 \pm 2^{\circ} \mathrm{C}$	-			1000
TK3	-35... +35	IP43	$2 \pm 1^{\circ} \mathrm{C}$		-		1500
TKL100	fissa $100^{\circ} \mathrm{C}$	IP55				manual	1000
TKL1	+90...+110	IP55		-		manual	1000

Electrical wirings

Dimensions (mm)

Description

The electromechnical immersion thermostat TI, three available ranges, is suitable for most of temperature control requirements for heating and cooling applications. The thermostats are available with external, internal range knob and with fix temperature calibration.

Technical specifications

Measurement range
Differential
Tolerance
Temperature gradient
Electrical rating
Max. housing temperature
Max. bulb temperature

Protection

Isolation class
Overvoltage category
Nominal impulse voltage
Dimensions
Standards

see schedule

$6 \pm 2^{\circ} \mathrm{C}$
Min. temp. $\pm 6^{\circ} \mathrm{C}$, max. temp. $\pm 4^{\circ} \mathrm{C}$
$1^{\circ} \mathrm{C} / \mathrm{min}$
16 (4) A, 250 V AC - 6 (1) A, 400 V AC
T 85
T 120
IP43 (*)
I

II
4 kV
$84 \times 84 \times 36 \mathrm{~mm}$
CE-conformity, PED group 2

$\left(^{*}\right)$ The degree of protection is ensured by placing the unit horizontally or vertically with the cable entry facing down.

Models	Range $^{\circ} \mathrm{C}$	Internal knob	External knob	Reset
TI1	$0 \ldots+60$		\bullet	
TI1S	$0 \ldots+60$	\bullet		
TI2	$0 \ldots+90$			
TI2S	$0 \ldots+90$			
TI3	$+30 \ldots+70$			manual
TIL100	Fix $100^{\circ} \mathrm{C}$		manual	
TIL1	$+90 \ldots+100$			

Electrical wirings

Dimensions (mm)

Description

The electromechanical strap-on pipe thermostat TC with liquid expansion sensor, two available ranges, is suitable for most of temperature control requirements for heating and cooling applications. The thermostats are available with external, internal range knob and as safety limiter. The thermostat comes with a spring band and a 20 g bag of thermal paste.

Technical specifications

Measurement range

Tolerance
Differential
Electrical rating
Max. temperature
Protection
Isolation class
Overvoltage category
Nominal impulse voltage
Dimensions
Accessory
Standards
see schedule
see schedule
see schedule
16 (4) A, 250 V AC - 6 (1) A, 400 V AC
T 85
IP40
I
II
4 kV
$105 \times 42 \times 38 \mathrm{~mm}$
Spring band and thermal paste (included)
CE-conformity

Models	Range $^{\circ} \mathrm{C}$	Differential	Tolerance	External knob	Internal knob	Reset
TC1	$+5 \ldots+60$	$6 \pm 2^{\circ} \mathrm{C}$	$\pm 5^{\circ} \mathrm{C}$	\bullet		
TC1S	$+5 \ldots+60$	$6 \pm 2^{\circ} \mathrm{C}$	$\pm 5^{\circ} \mathrm{C}$		\bullet	
TC2	$+10 \ldots+90$	$6 \pm 2^{\circ} \mathrm{C}$	$\pm 5^{\circ} \mathrm{C}$	\bullet		
TC2S	$+10 \ldots+90$	$6 \pm 2^{\circ} \mathrm{C}$	$\pm 5^{\circ} \mathrm{C}$		manual	
TCL65	Fix 65		$+0-6^{\circ} \mathrm{C}$		manual	
TCL1	$+30 \ldots+70$			$-6^{\circ} \mathrm{C}$		

Electrical wirings

Dimensions (mm)

Description

The RTA02 controller is designed to control fan coil in heating and cooling systems. RTA02 controls heating and/or cooling valves, fan speeds with 2 or 4 -pipe fan coil.

Technical specifications

- 2 and 4 pipes selectable fan coil applications
- Fan control with manual 3 -speeds setting
- ON-OFF control action for actuators
- Analog input for water temperature sensor
- Output voltage for valves 230 V AC, fan motor 230 V AC
- Power supply: $230 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}$
- Frost protection function
- Display with blue backlight

- CE certification

Technical features

Control range	$5 \ldots 35^{\circ} \mathrm{C}$
Power supply	$230 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz}$
Outputs	On-Off (valves)
	3 speed output, 230 V AC. max 2 A resistive, 1 A inductive

Knob and selectors			
	Fan Set point Operating mode	OFF - LOW - MED - HIGH	Power on, fan speed
		Push bottom $\boldsymbol{\triangle}$	Set point setting
		Push bottom M	Heat, cool, auto or fan
Analogue Inputs			
	Water temperature	Strap-on	
Accuracy		$\pm 1 \mathrm{~K}$	
Application		2- or 4-pipe-fan coil	
Housing		Single housing $86 \times 86 \times 23,5 \mathrm{~mm}$	
Protection class		IP30	
Working temperature		0... $45^{\circ} \mathrm{C}$	
Storage temperature		$-10 . . .+50^{\circ} \mathrm{C}$	
Working humidity		5...95\% RH non condensing	

Electrical wiring

2-pipe system

4-pipe system

Mounting

Description

The RTA37 thermostat, in its various versions, is suitable for application in heating, air conditioning and refrigeration systems.

The RTA37 can be configured with the following temperature ranges:
$+5 \ldots+35^{\circ} \mathrm{C}$
$-10 \ldots+20^{\circ} \mathrm{C}$
$-35 \ldots+5^{\circ} \mathrm{C}$
$+35 \ldots+65^{\circ} \mathrm{C}$
The choice of temperature range must be made at startup by acting on the dip switches.
Then place the label, with the chosen temperature scale, on the front of the housing.

Technical specifications

Power supply	$230 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$
Relay output with switch contact	$\max 3 \mathrm{~A}, 230 \mathrm{VAC}$
Adjusting action	$\mathrm{ON}-\mathrm{OFF}$
Adjustable differential	$1-8 \mathrm{~K}$
Control output	$\mathrm{ON}-\mathrm{OFF}$
Temperature probe connection	NTC 10 K
Screw clamps for cables	
with maximum cross-sectional area	$2,5 \mathrm{~mm}^{2}$
Working temperature ${ }^{\circ} \mathrm{C}$	$0 \ldots 50^{\circ} \mathrm{C}$
Working range RH	$<80 \% \mathrm{RH}$
Storage temperature	$-20 \ldots+70^{\circ} \mathrm{C}$
Protection type	IP 40
Rail mounting	DIN
Standards	CE conformity, RoHS

Functioning

The RTA37 thermostat provides temperature control with ON-OFF action with a differential set by knob on the front of the controller.

Cooling action

The RTA37 thermostat is equipped with a relay with a switching contact. The relay is energized when the temperature detected by the NTC probe exceeds the temperature value set on the knob plus the value of the differential. The contact between terminals C-NO is closed.
When the temperature drops to the set value (set point), the relay de-energizes, opens the contact between the C-NO terminals, and closes the contact between the C-NC terminals.

Heating action

For operation with heating action, dip switch 6 must be set to OFF.
The relay is energized when the temperature detected by the NTC probe exceeds the
temperature value set on the knob plus the value of the differential.
The contact between terminals C-NO is closed.
When the temperature drops to the set value (set point), the relay de-energizes, opens the contact between the C-NO terminals and closes the contact between the C-NC terminals.

Electrical wirings

The above connections refer to cooling operation. For heating operation, dip switch 6 must be set to OFF.

Dimensions (mm)

0 .
 000

violetline

flow switches

Description

The flow switch serie FS is designed for controlling flow rates in pipes and ducts employed in HVAC applications from 1" up to 8", optionally up to 10 ". In particular for monitoring flow in water, for pumps in oil circulation, cooling and lubrication systems, heat exchangers, compressors and is used as flow control device or as water failure protection switch. Models available with brass and stainless steel body for aggressive media.

Technical specifications

Flow rate

Switching output
Electrical rating
Lifetime
Electrical connection
Max. pressure
Calibration

Housing
Cable conduit
Body and lever material
Paddles material
Dimensions
Weight
Protection type
Protection class
Max. fluid temperature
Working humidity RH
Working temperature ${ }^{\circ} \mathrm{C}$
Storage temperature
Installation

Standards

See schedule

Dustproof microswitch as potential-free SPDT contact
16 (8) A, 24-250 VAC, at 24 VAC min. 150 mA
100.000 cycles at nominal load

Screw terminal, wire up to $1,5 \mathrm{~mm}^{2}$, cable $\varnothing 6 \ldots 9 \mathrm{~mm}$
See schedule

The flowswitch is factory calibrated at its min. sensitivity. To increase the set value turn clockwise the adjustment screw. The cut-out value must be >- the minimum flow necessary to guarantee the protection of the plant. The units without "T" fittings are supplied with 4 paddles, which must be cut off according to the pipe. All devices can be supplied with "T" connection on request as schedule indications.

ABS, RAL 9010, UV resistant
M20 x 1,5 mm
1" GAS, brass or stainless steel Aisi 316, optionally with 1" NPT thread
Stainless steel Aisi 316
See drawing
600 gr
IP65
III
$-25 \ldots+120^{\circ} \mathrm{C}$
10...95\% RH, non-condensing
$-40 \ldots+85^{\circ} \mathrm{C}$
$-20 \ldots+60^{\circ} \mathrm{C}$
Horizontal and vertical, screw-in thread, Rp 1" (ISO7/1) shall be installed far from elbows or throttlings, with arrow on flow direction. If pipe is vertical, recalibrate range to balance paddle weight. If the device is downwards mounted take care to slags, and apply it in a straight pipe far from filters, valves, etc with length at least 5 times the diameter of pipe upstream and downstream the unit. The paddles must be installed starting from the shortest.

CE conformity, RoHS

Models	Fluid	Max. pressure	Body material
FS1	normal	15 bar	brass
FS2	aggressive	30 bar	stainless steel Aisi 316

Option suffix NPT for body with 1" NPT thread suffix -10 with 8" paddle for 10 " pipe size

Electrical wirings

Flow rates in $\mathrm{m}^{3} / \mathrm{h}$

Line pipe size	Paddlesize	Flow $\mathrm{m}^{3} / \mathrm{h}$				
		Flow increase Min. flow rate R to B closes	Flow increase Max. flow rate R to B closes	Flow decrease Min. flow rate R to Y closes	Flow decrease Max. flow rate R to Y closes	Max. recommended flow $\mathrm{m}^{3} / \mathrm{h}$
1"	1	0,8	2,2	1,2	2,3	3,6
1" 1/4	1	0,93	2,52	1,5	2,8	6,1
1" 1/2	1, 2	1,1	3,9	2,37	4,3	9,2
2"	1, 2	2,0	6,05	3,8	6,5	15
2" $1 / 2$	1, 2, 3	3,0	7,3	4,4	8,4	24
3"	1, 2, 3	5,0	11,7	6,2	12,6	36
4"	1, 2, 3	10,0	30,0	8,06	36,0	60
5"	1, 2, 3	21,1	51,4	24,0	69,0	94
6"	1, 2, 3, 4	12.4	29,0	20,0	33,7	120
	1, 2, 3	24,0	72,0	32,7	90,0	120
8"	1, 2, 3, 4	23,9	83,4	34,6	96,0	240
	1, 2, 3	48,4	174	66,8	200	240
10" *	1,2,3, 5	51	180	69	198	360

The values of minimum and maximum flow rate can be changed during installation shortening the paddles.

* Flow rates for this size are calculated.

Dimensions (mm)

ATTENTION

If flowswitch is used as a minimum flow controller, it is necessary to add another device downstream for alarm condition activation.

Description

The flow switch serie FL is designed for controlling flow rates in pipes and ducts employed in HVAC applications from $3 / 8^{\prime \prime}$ up to $2^{\prime \prime}$. In particular for monitoring flow of liquid media, pumps in oil circulation, cooling and lubrication systems, heat exchangers, compressors and is used as flow control device or as water failure protection switch.

Technical specifications

Flow rate
Switching output
Electrical rating
Lifetime
Electrical connection
Max. pressure
Average pressure loss
Hysteresis
Housing
Connection
Body and lever material
Paddles material

Dimensions

Weight
Protection type
Protection class
Max. pipe temperature
Working humidity
Working temperature
Storage temperature
Installation

See schedule
Dustproof microswitch SPDT contact
3 A, 250 V AC; 5 A, 125 V AC
100.000 cycles at nominal load

DIN 43650A connector
25 bar
0.01 bar at Q max
min. $0,7 \mathrm{l} / \mathrm{min}$.
ABS, black
Female thread T-fitting
Nickel plated brass
Stainless steel Aisi 316L
See drawing
See schedule
IP65
I
$-20 \ldots+110^{\circ} \mathrm{C}$
10...95\% RH, non-condensing
$-40 \ldots+90^{\circ} \mathrm{C}$
$-40 \ldots+90^{\circ} \mathrm{C}$
Horizontal or vertical, shall be installed far from elbows or throttlings, with arrow on flow direction. If pipe is vertical, recalibrate range to balance paddle weight. If the device is downwards mounted take care to slags, and apply it in a straight pipe far from filters, valves, etc with length at least 5 times the diameter of pipe upstream and downstream the unit.

CE conformity, RoHS

Models	Connection	Flow rate I/min $\mathbf{H}_{2} \mathbf{O}$	Max. recommended flow rate I/min $\mathbf{H}_{\mathbf{2}} \mathbf{O}$
FL10	G 3/8	$4.4(3.7)-5.9(5.1)$	10
FL15	G $1 / 2$	$4.4(3.7)-5.9(5.1)$	20
FL20	G 3/4	$9.4(8.0)-12.8(10.8)$	40
FL25	G 1	$14.7(12.5)-19.9(16.9)$	60
FL32	G $11 / 4$	$24.1(20.5)-32.7(27.8)$	80
FL40	G $11 / 2$	$37.7(32.1)-51.0(43.4)$	100
FL50	G 2	$59.0(50.1)-79.8(67.8)$	150

Electrical wirings

Installation

Attention: the flow direction should be the same as the arrow direction, do not pull the black plastic shell.

Dimensions (mm)

A mm	B mm	C mm	Weight kg
28	G $3 / 8$	58	0,33
28	G $1 / 2$	58	0,30
28	G 3/4	58	0,32
34	G 1	58	0,40
34	G 1 1/4	72	0,47
34	G 1 1/2	72	0,57
46	G 2	72	0,72

Description

The flow switch serie FL200 is designed for controlling flow rates in pipes and ducts employed in HVAC applications from DN32 up to DN200. In particular for monitoring flow in water, for pumps in oil circulation, cooling and lubrication systems, heat exchangers, compressors and is used as flow control device or as water failure protection switch. Models available with brass and stainless steel body for aggressive media.

Technical specifications

Flow rate
Switching output
Electrical rating
Lifetime
Electrical connection
Max. pressure
Average pressure loss
Hysteresis
Housing
Connection
Body and lever material
Paddles material
Dimensions
Protection type
Protection class
Max. pipe temperature
Working humidity
Working temperature
Storage temperature
Installation

Standards

See schedule

Dustproof microswitch as potential-free SPDT contact

See schedule

100.000 cycles at nominal load

DIN 43650A connector
25 bar
0.01 bar at Q max
min. $0.7 \mathrm{l} / \mathrm{min}$.
ABS, black
Male thread fitting $1 / 2^{\prime \prime}$ ISO
Nickel plated brass
Beryllium copper alloy
See drawing
IP65
II
$-25 \ldots+110^{\circ} \mathrm{C}$
10... 95% RH, non-condensing
$-25 \ldots+80^{\circ} \mathrm{C}$
$-40 \ldots+80^{\circ} \mathrm{C}$
Horizontal or vertical, shall be installed far from elbows or throttlings, with arrow on flow direction. If pipe is vertical, recalibrate range to balance paddle weight. If the device is downwards mounted take care to slags, and apply it in a straight pipe far from filters, valves, etc with length at least 5 times the diameter of pipe upstream and downstream the unit.
CE conformity, RoHS

Models
FL200A
FL200B

Electrical rating

$0,1 \mathrm{~A}, 125 \mathrm{~V}$ AC; min. $1 \mathrm{~mA}, 5 \mathrm{~V}$ DC
$3 \mathrm{~A}, 250 \mathrm{~V}$ AC; $5 \mathrm{~A}, 125 \mathrm{~V}$ AC; min. $160 \mathrm{~mA}, 5 \mathrm{~V}$ DC

FL200

Electrical wirings

Pipe DN	Flow m ${ }^{3} / \mathrm{h}$				
	Paddle 1	Paddles 1, 2	Paddles $1,2,3$	Paddles $1,2,3,4$	Max. recommended flow $\mathrm{m}^{3} / \mathrm{h}$
32	1,7 (1,4)...1,8 (1,5)	-	-	-	6
40	1,7 (2,4)...1,8 (2,0)	-	-	-	9
50	$4,5(3,8) \ldots .4,9(4,2)$	1,2 (1,0)...1,4 (1,2)	-	-	15
65	9,5 (8,1)...11,2 (9,5)	3,2 (2,7)...3,6 (3,1)	-	-	24
80	13,5 (11,5)...14,8(12,6)	$5,9(5,0) \ldots 7,4(6,3)$	1,4 (1,2)...2,7 (2,3)	-	36
100	25,8 (21,9)...30,2 (25,7)	$8,3(7,1) \ldots 8,8(7,5)$	$3,3(2,8) \ldots 3,9(3,3)$	2,3 (2,0)...3,8 (3,2)	60
125	$35,5(30,2) \ldots 41,6(35,4)$	11,7 (9,9)...13,1 (11,1)	$5,1(4,3) \ldots 5,8(4,9)$	$3,1(2,6) \ldots 3,8(3,2)$	85
150	49,6 (42,2)...54,7 (46,5)	14,8 (12,6)...16,9 (14,4)	$6,2(5,3) \ldots 6,6(5,6)$	$4,0(3,4) \ldots 4,5(3,8)$	110
200	88,2 (75,0)...97,3 (82,7)	$26,3(22,4) \ldots 30,0(25,5)$	11,0 (9,4)...11,7 (9,9)	$7,1(6,0) \ldots 8,0(6,8)$	203

Values with increasing flow, in brackets values with decreasing flow.

Installation

Flow direction

Attention: the flow direction should be the same as the arrow direction, do not pull the black plastic shell.

Dimensioni (mm)

Description

The flow switch serie FLUS001 is designed for controlling flow rates in pipes and ducts employed in HVAC applications from $3 / 4$ " up to 8 ". The reed contact guarantees a complete isolation between the electrical and the mechanical part.

Technical specifications

Flow rate
Switching output
Electrial rating
Electical connection
Max pressure
Average pressure loss
Hysteresis
Housing
Connection
Body and lever material
Paddles material
Dimensions
Protection type
Protection class
Max. fluid temperature
Working temperature
Installation

See schedule
Reed SPST, max. 26 VA, 20 W
1 A, 230 VAC, 48 VDC
$1,5 \mathrm{~m}$ cable $2 \times 0,5 \mathrm{~mm}^{2}, 300 / 500 \mathrm{~V}$ UV and weather resistant
10 bar
0.01 bar at Q max
min. $0.7 \mathrm{l} / \mathrm{min}$.
PPO, black
Threaded female $3 / 4$ ring brass nickeled
Brass
Stainless steel
See drawing
IP65

I
$-25 \ldots+100^{\circ} \mathrm{C}$
$-25 \ldots+70^{\circ} \mathrm{C}$
Horizontal or vertical, far from elbows or narrowing, with the arrow in the direction of flow. If the device is mounted downwards protect it from scale or impurities and apply it in a straight line away from the filters, valves, etc with a distance of at least 5 times the diameter of the pipe upstream and downstream of the unit.

Standards

CE conformity, RoHS

Pipe	Length of paddle cut (mm)	Flow rate $\mathrm{m}^{3} / \mathrm{h} \mathrm{H}_{2} \mathrm{O}$		Max. recommended flow rate $\mathrm{m}^{3} / \mathrm{h} \mathrm{H}_{2} \mathrm{O}$
		Increasing flow ON	Decreasing flow OFF	
DN20	9	1,08	0,9	4
DN25	15	1,32	1,08	5
DN32	20	1,92	1,62	8
DN40	30	2,1	1,8	10
DN50	40	2,7	2,4	14
DN80	60	5,1	4,68	30
DN100	80 (do not cut)	6,36	5,82	40
DN150	80 (do not cut)	15,48	14,22	100
DN200	80 (do not cut)	30	28,98	180

Electrical wirings

Installation

Dimensions (mm)

Description

The flow switch serie FLUS is designed for controlling flow rates in pipes and ducts employed in HVAC applications from 1" up to 2". The reed contact guarantees a complete isolation between the electrical and the mechanical part.

Technical specifications

Flow rate
Switching output
Electrial rating
Electical connection
Max pressure
Average pressure loss
Hysteresis
Housing
Connection
Body and lever material
Paddles material
Sealing
Dimensions
Protection type
Protection class
Max. fluid temperature
Working temperature
Installation

See schedule
Reed SPST, max. 26 VA, 20 W
1 A, 230 VAC, 48 VDC
RVV cable $2 \times 0,5 \mathrm{~mm}^{2}, 300 / 500 \mathrm{~V}$ UV and weather resistant
10 bar
0,01 bar at Q max
$\mathrm{min} .0,7 \mathrm{l} / \mathrm{min}$.
PPE, black
Female threaded T-fitting (besides FLUS09AW), nut brass nickeled

Brass
Brass
NBR
See drawing
IP65
I
$-25 \ldots+100^{\circ} \mathrm{C}$
$-25 \ldots+70^{\circ} \mathrm{C}$
Horizontal or vertical, far from elbows or narrowing, with the arrow in the direction of flow. If the device is mounted downwards protect it from scale or impurities and apply it in a straight line away from the filters, valves, etc with a distance of at least 5 times the diameter of the pipe upstream and downstream of the unit.

CE conformity, RoHS

Models	Connection	Cable m	Setting $\mathrm{m}^{3} / \mathrm{h}$	Flow rate $\mathrm{m}^{3} / \mathrm{h} \mathrm{H}_{2} \mathrm{O}$		Max. recommended flow rate $\mathrm{m}^{3} / \mathrm{h} \mathrm{H}_{2} \mathrm{O}$
				Increasing flow ON	Decreasing flow OFF	
FLUS002AW	G 3/4	2	0,3	0,5	0,3	4,8
FLUS006AW	G 1	2	0,4	0,6	0,4	7,8
FLUS007AW	G 1	1	0,95	0,78-0,99	0,74-0,95	7,8
FLUS011AW	G 1 1/4	4	1,92	-	-	10,8
FLUS010AW	G 1 1/2	1,5	1,6	1,62-2,01	1,53-1,95	18
FLUS009AW	-	4	2,76	2,49-3,21	2,44-3,17	21

Electrical wirings

Installation

Dimensions (mm)

FLUS002AW

FLUS006AW / FLUS007AW

FLUS011AW

Description

The level switch serie FG is designed to control fluid level in tanks in an simple and effective way. The switching function through the reed contact (N / O or N / C contact) is determined by the installation position. The switching function can be reversed by simply rotating the level switch for 180°.

Technical specifications

Connector

Max. pressure
Contact
Electrical rating

Contact resistance

Min. contact force
Collegamenti elettrici
Material
Specific fluid weight
Installation
Protection type
Standards

Male thread G $1 / 2$
FG1, FG2 10 bar - FGP 4 bar
N/O or N/C depending on the installation
Reed, max 240 V AC DC, max 40 W, max 0,5 A
max 80 mOhm
400 V DC / 1 sec.
PVC braided cable AWG 24, 2 wires, 1 m length
Polypropylene
$>0,6 \mathrm{~g} / \mathrm{cm}^{3}$
Horizontal $\pm 30^{\circ}$
IP68
CE conformity, RoHS

Model	Fluid	Temperature	Body material	Connections
FG1	not aggressive	$-10 \ldots+80^{\circ} \mathrm{C}$	Polypropylene	single
FG2	not aggressive	$-10 \ldots+80^{\circ} \mathrm{C}$	Polypropylene	double
FGP	not aggressive	$-10 \ldots+80^{\circ} \mathrm{C}$	Polypropylene	single

Dimensions (mm)

Description

The air flow switch serie FSA is designed for controlling flow rates od air and non aggressive gases in pipes and ducts employed in HVAC applications.

Technical specifications

Switching output
Electrical rating
Lifetime
Electrical connection
Housing
Cable conduit
Lever material
Paddles material
Dimensions
Weight
Protection type
Protection class
Max. fluid temperature
Working humidity RH
Working temperature ${ }^{\circ} \mathrm{C}$
Storage temperature
Standards

Dustproof microswitch as potential-free SPDT contact
16 (8) A, 24-250 V AC, at $24 \mathrm{~V} \mathrm{AC} \mathrm{min}$.
100.000 cycles at nominal load

Screw terminal, wire up to $1,5 \mathrm{~mm}^{2}$, cable Ø $6 \ldots 9 \mathrm{~mm}$
ABS, white
M20 x $1,5 \mathrm{~mm}$
Brass
Stainless steel Aisi 301
See drawing
600 gr
IP65
III
$-10 \ldots+85^{\circ} \mathrm{C}$
$10 \ldots 95 \%$ RH, non-condensing
$-40 \ldots+85^{\circ} \mathrm{C}$
$-40 \ldots+85^{\circ} \mathrm{C}$
CE conformity, RoHS

Model	Min. cut-out value $\mathbf{m} / \mathbf{s e c}$.	Min. $\mathbf{c u t}$ (in value $\mathbf{m} / \mathbf{s e c}$.	Max cut-out value $\boldsymbol{m} / \mathbf{s e c}$.	Max cut-in value $\mathbf{m} / \mathbf{s e c}$.
FSA1	1,0	2,5	8,0	9.2

Electrical wirings

Dimensions (mm)

ATTENTION

The units are calibrated at the minimum switch-off value. A higher value can be adjusted by turning the range screw clockwise. Due to the risk of fracture at air speed higher than $5 \mathrm{~m} / \mathrm{s}$ the paddle must be cut off on the marked side. When the paddle is cut off, the minimum cut-out value increases from $1 \mathrm{~m} / \mathrm{s}$ to $2,5 \mathrm{~m} / \mathrm{s}$. Straights zones should be provided for a length of $5 \times$ diameter upstream and downstream the location of installation to avoid air swirl and paddle instability.

0 .
 000

blueline

pressure switches

Description

Air differential pressure switch serie PA for monitoring overpressure, vacuum and differential pressure of air or other non-combustible, non-aggressive gases. The switching pressure can be adjusted without a manometer at the adjustment knob with the guide value scale. Various versions are available for this with overlapping adjustment ranges of between 20 and 5000 Pa (0,2 and 50 mbar). Possible fields of application are monitoring air filters and ventilators, industrial cooling-air circuits, flows in ventilation ducts, overheating protection for fan heaters, controlling air and fire-protection flaps, frost protection for heat exchangers.

Technical specifications

Medium
Measurement range

Accuracy
Mechanical working life
Electrical rating
Electrical connection
Max. operating pressure
Housing material
Cable conduit
Diaphragm material
Housing
Weight
Protection type
Working humidity
Working temperature
Storage temperature
Accessories (optionally)
Installation
Installation position
Standards
Optional

Air, non-combustible and non-aggressive gases
20... $300 \mathrm{~Pa}(0,2 \ldots 3 \mathrm{mbar}), 30 \ldots 400 \mathrm{~Pa}(0,3 \ldots 4 \mathrm{mbar})$,
$50 \ldots 500 \mathrm{~Pa}(0,5 \ldots 5 \mathrm{mbar}), 50 \ldots 700 \mathrm{PA}(0,5 \ldots 7 \mathrm{mbar})$, 200 ... 1000 Pa ($2 \ldots 10 \mathrm{mbar}$), $500 \ldots 2500 \mathrm{~Pa}$ ($5 \ldots 25 \mathrm{mbar}$), 1000... 5000 Pa (10... 50 mbar), 100... 1000 Pa (1... 10 mbar) $\pm 15 \%$
Over 10^{6} switching operations

Max 1.5 (0.4) A / 250 VAC (low voltage version max. 0,1 A, 24 VDC on request)
AMP flat plug $6.3 \times 0.8 \mathrm{~mm}$, acc. DIN 46244 or push-on screw terminals
10 kPa (100 mbar) for all pressure ranges
Switch body made of PA 6.6, cover made of PS
M16x1,5 connection made of polyamide
Silicone, tempered at $200^{\circ} \mathrm{C}$, free of gas emissions (NBR optionally)
approx. $\varnothing 85 \times 58 \mathrm{~mm}$
150 g
IP54 (IP65 in version G)
$0 . . .95 \% \mathrm{RH}$, non-condensing
$-20 \ldots+85^{\circ} \mathrm{C}$
$-40 \ldots+85^{\circ} \mathrm{C}$
Connection set (PVC-hose $2 \mathrm{~m} \varnothing 6$ with 2 ABS nippels and 4 screws) and snap-on plastic brackets Screw fastening
Preferred vertical
CE-conformity, RoHS, EN1854 class A.Models available on request with UL508, CSA, ATEX approvals.
suffix M for multiply packing (45 pcs/cardboard)
suffix B for models with range in mbar
suffix UL for UL / CSA approval (not available for IP65 models)
suffix G for IP65 protection
suffix \mathbf{X} for ATEX directive
suffix LC for low voltage version max. $0,1 \mathrm{~A}, 24 \mathrm{~V}$ DC
suffix NBR for NBR diaphragm

Models	Measuring range	Tolerance	Differential
PA1	20... $300 \mathrm{~Pa}(0,2 \ldots 3 \mathrm{mbar})$	$\pm 15 \%$	10 Pa (0,1 mbar)
PA2	$30 . . .400 \mathrm{~Pa}(0,3 . .4 \mathrm{mbar})$	$\pm 15 \%$	15 Pa ($0,15 \mathrm{mbar}$)
PA3	$50 \ldots 500 \mathrm{~Pa}(0,5 \ldots 5 \mathrm{mbar})$	$\pm 15 \%$	20 Pa (0,2 mbar)
PA4	200... 1000 Pa ($2 \ldots .10 \mathrm{mbar}$)	$\pm 15 \%$	100 Pa (1 mbar)
PA5	$500 \ldots 2500 \mathrm{~Pa}$ ($5 \ldots .25 \mathrm{mbar}$)	$\pm 15 \%$	150 Pa ($1,5 \mathrm{mbar}$)
PA6	1000... 5000 Pa (10... 50 mbar)	$\pm 15 \%$	250 Pa ($2,5 \mathrm{mbar}$)
PA7	100... 1000 Pa (1... 10 mbar)	$\pm 15 \%$	50 Pa (0,5 mbar)
PA8	$50 \ldots 700 \mathrm{~Pa}(0,5 \ldots 7 \mathrm{mbar})$	$\pm 15 \%$	20 Pa (0,2 mbar)
Accessories:	APA1 Snap-on plastic bracket, APA2 Snap-on plastic bracket, S APA3 PVC-hose $2 \mathrm{~m} \varnothing 6$ with 2	and 4 screws	

Order matrix

* Electrical rating: 2G: max $60 \mathrm{~mA} / 30 \mathrm{VDC}$ or 100 mA 24 VDC 2D: max $60 \mathrm{~mA} / 30$ VDC 0,6 W

Electrical wirings

Dimensions (mm)

APA1 Snap-on plastic bracket, L-shaped

APA2 Snap-on plastic bracket, S-shaped

ABS nippel (part of APA3)

Description

The MM liquid column manometer is engineered for HVAC/R applications. The device detects air and non-corrosive gas pressure and provides a clear analog display of the measured values. It is designed with a reservoir to protect the manometer liquid from leaking into the duct during overpressure situation. It is provided with screws, 2 meters of pipe, labels and a bottle of red liquid.

Technical specifications

Gas	air and non-corrosive gas
Range	see schedule
Accuracy	see schedule
Material	white ABS housing, cover PMMA
Max working pressure	200 kPa
Working temperature	$-40 \ldots+60^{\circ} \mathrm{C}$
Gauge fluid	Isopar M, colour red $0.786 \mathrm{~kg} / \mathrm{dm}\left(15^{\circ} \mathrm{C}\right)$
Dimensioni	$190 \times 153 \times 45 \mathrm{~mm}$
Standards	CE conformity, RoHS

Model	Range	Accuracy	Liquid
MM6	$0 \ldots 200 \ldots 600 \mathrm{~Pa}$	$0 \ldots 200 \mathrm{~Pa} \pm 5 \%, 200 \ldots 600 \mathrm{~Pa} \pm 25 \%$	Red

Installation

1) Mount the device horizontally in the desired location.
2) Unscrew the zero adjustment knob (lower one) so that it is completely open and then turn one round backwards. Open the fill plug (upper one) and pour in the gauge fluid until it reaches the zero on the scale. Finetune with the zero adjustment knob until the fluid is exactly at the zero level. Screw the fill plug back to its place.
3) Connect the pressure tubes. Connect positive pressure to port labeled " + " and negative pressure to port "-"

SAFETY: Product equipped with integral reservoir to prevent gauge fluid leakage during overpressure situation. NOTE! Use only the liquid supplied with the device to ensure accuracy and performance.

0 0
 000

orangeline

damper actuators

Description

Damper actuator serie S2 to operate and position air dampers in HVAC systems.
For air dampers up to approx. $0.5 \mathrm{~m}^{2}$
Nominal voltage $24 \mathrm{Vac} / \mathrm{dc}$ and 230 Vac
Control: Open-close or 3-point and proportional
Caracteristics: universal spindle clamp fo easy direct mounting, shaft dimensions $\varnothing 6$ to $15,5 \mathrm{~mm}$ round / $\square 5$ to 12 mm square, minimum shaft length 35 mm , anti-rotation bracket provided for stability, adjustable angle of rotation, $0,9 \mathrm{~m}$ cable connection.

Technical features

Actuator model		S2A	S2B	S2AM	S2BM
Damper area	m^{2}	0.5			
Nominal torque	Nm	2			
Power supply	V	24 AC/DC	100... 240 AC	24 AC/DC	100... 240 AC
Frequency	Hz	50/60			
Power consumption					
- in operation	W	2,0	2,8	2,0	2,8
- at rest	W	0,5	0,7	0,5	0,7
- for wire sizing	VA	4,5			
Running time	s	20... 45			
Sound power level	max. db (A)	45			
Control signal		2-3 point	2-3 point	$0 . .10 \mathrm{~V}$ DC	$0 . .10 \mathrm{~V}$ DC
Auxiliary switch rating		$3(1,5)$ A, 250 VAC			
Life Cycle	cycles	60.000			
Rotation angle		max. 95°			
Rotation way		L/R switch			
Protection class		11			
Protection degree		IP54			
Working range ${ }^{\circ} \mathrm{C}$		$-20 . .+70^{\circ} \mathrm{C}$			
Working range \% RH		$5 . . .95 \% \mathrm{RH}$, non-condensating			
Storage temperature		$-40 . . .+70^{\circ} \mathrm{C}$			
Maintenance		free			
Weight	g	600			
Standards		CE-conformity, RoHs			
Option		suffix S for models with 1 SPDT auxiliary switch			

Electrical wirings

Setting

Dimensions (mm)

Description

Damper actuator serie S4 to operate and position air dampers in HVAC systems.
For air dampers up to approx. $1 \mathrm{~m}^{2}$

- Nominal voltage $24 \mathrm{Vac} / \mathrm{dc}$ and 230 Vac
- Control: Open-close or 3-point and proportional

Caracteristics: universal spindle clamp fo easy direct mounting, shaft dimensions $\varnothing 10$ to 16 mm round $/ \square 10$ to 12 mm square, minimum shaft length 50 mm , anti-rotation bracket provided for stability, manual over ride by push button, selectable direction of rotation, adjustable angle of rotation.

Technical features

Actuator model		S4A	S4B	S4AM	S4BM
Damper area	m^{2}	1			
Nominal torque	Nm	4			
Power supply	V	24 AC/DC	100... 240 AC	24 AC/DC	100... 240 AC
Frequency	Hz	50/60			
Power consumption					
- in operation	W	2.2	3.2	2.2	3.2
- at rest	W	0.5	0.7	0.5	0.7
- for wire sizing	VA	4.4	6.4	4.4	6.4
Running time	s	45			
Sound power level	max. db (A)	45			
Control signal		2-3 point	2-3 point	$\begin{gathered} \text { 0(2)... } 10 \mathrm{~V} \text { DC } \\ 0(4) \ldots 20 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 0(2) \ldots 10 \mathrm{~V} \mathrm{DC} \\ 0(4) \ldots 2 \mathrm{~mA} \end{gathered}$
Auxiliary switch rating		3 (1.5) A, 250 V AC			
Life Cycle	cycles	60.000			
Rotation angle					
- operating		0-90 ${ }^{\circ}$			
- limitation		$5-85^{\circ}$ (steps of 5°)			
Protection class		11			
Protection degree		IP54			
Working range ${ }^{\circ} \mathrm{C}$		$-20 . . .+70^{\circ} \mathrm{C}$			
Working range RH		$5 . . .95 \% \mathrm{RH}$, non-condensating			
Storage temperature		$-40 . .+70^{\circ} \mathrm{C}$			
Maintenance		free			
Weight	g	900	1000	1000	900
Standards		CE-conformity, RoHs			
Option		suffix S for models with 2 SPDT auxiliary switches			

Electrical wirings for models at 2 / 3 point

Wiring diagram
2-point

$\perp \sim 24 \mathrm{Vac}+/-20 \% \quad \perp$

- $+24 \mathrm{Vdc}+/-10 \%-\quad+$
N L 230 Vac +/-10\% N
$\mathrm{Si} \begin{array}{ll}\mathrm{ON} \\ \mathrm{OFF} & 0^{\circ} 0^{\circ} \curvearrowleft 90^{\circ} \\ 90^{\circ}\end{array}$

$3(1,5) \mathrm{A} 230 \mathrm{~V}$
actuator in position 0°

3-point

Auxiliary switches

Auxiliary switch adjustment

Factory setting:
switch a at $10^{\circ}-$ switch b at 80°
The switching position can be changed manually. be changed manualy.

Parallel connections

Max 5 actuators

Settings

Changing direction of rotation

Angle of rotation limiting The angle of rotation at 90° can be reduced by up to 30° from each end position with screw 1 and 2.

Screw 1

Screw 2

Electrical wirings for proportional models

Wiring diagram

Dimensions (mm)

Description

Technical features

Actuator model		S8A	S8B	S8AM	S8BM
Damper area	m^{2}	1,5			
Nominal torque	Nm	8			
Power supply	V	24 AC/DC	100... 240 AC	24 AC/DC	100... 240 AC
Frequency	Hz	50/60			
Power consumption					
- in operation	W	4.5			
- at rest	W	0.5	0.7	0.5	0.7
- for wire sizing	VA	7.0			
Running time	s	30... 60			
Sound power level	max. db (A)	45			
Control signal		2-3 point	2-3 point	$\begin{gathered} 0(2) \ldots 10 \mathrm{~V} \text { DC } \\ 0(4) \ldots 20 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 0(2) \ldots 10 \mathrm{~V} \mathrm{DC} \\ 0(4) \ldots 20 \mathrm{~mA} \end{gathered}$
Auxiliary switch rating		3 (1.5) A, 230 V AC			
Life Cycle	cicli	60.000			
Rotation angle					
- operating		0-90			
- limitation		$5-85^{\circ}$ (steps of 5°)			
Protection class		III	11	III	11
Protection degree		IP54			
Working range ${ }^{\circ} \mathrm{C}$		$-20 . . .+70^{\circ} \mathrm{C}$			
Working range RH		$5 . . .95 \% \mathrm{RH}$, non-condensating			
Storage temperature		$-40 \ldots+80^{\circ} \mathrm{C}$			
Maintenance		free			
Weight	g	<1300			
Standards		CE-conformity, RoHs			
Option		suffix S for models with 2 SPDT auxiliary switches			

Electrical wirings for models at 2 / 3 points

Wiring diagram

$\begin{array}{ll}\mathrm{S} 1 \mathrm{ON} \\ \text { OFF } & 0^{\circ} \curvearrowleft 90^{\circ} \\ 0^{\circ} & 90^{\circ}\end{array}$

Auxiliary switches

$3(1,5)$ A 230 Vac actuator in position 0°

Parallel connections

Electrical wirings for proportional models

Wiring diagram 230 V AC

Settings DIP switches

DIP 1
Feedback signal

OFF: 0(2)... 10 V ON: 0(4)... 20 mA

DIP 2
Input signal starting point

OFF: $0 . . .10 \mathrm{~V}$ o $0 . . .20 \mathrm{~mA}$ ON: 2... 10 V o $4 . . .20 \mathrm{~mA}$

DIP 3 Input signal

OFF: 0(2)... 10 V ON: 0(4) ... 20 mA

DIP 4

OFF: With the increase of the signal,
the actuator rotate couterclockwise ON: With the increase of the signal, the actuator rotate clockwise

Auxiliary switch adjustment

Factory setting:
switch a at 10°
switch b at 80°
The switching position can be changed manually.

Dimensions (mm)

Description

Damper actuator serie S16 to operate and position air dampers in HVAC systems.
For air dampers up to approx. $3 \mathrm{~m}^{2}$

- Nominal voltage $24 \mathrm{Vac} / \mathrm{dc}$ and 100... 230 Vac
- Control: Open-close or 3-point and proportional
- Caracteristics: universal spindle clamp fo easy direct mounting, shaft dimensions $\varnothing 10$ to 20 mm round $/ \square 10$ to 16 mm square, minimum shaft length 50 mm , anti-rotation bracket provided for stability, manual over ride by push button, selectable direction of rotation, adjustable angle of rotation, parallel connection up to 10 actuators.

Technical features

Actuator model		S16A	S16B	S16AM	S16BM
Damper area	m^{2}	3			
Nominal torque	Nm	16			
Power supply	V	24 AC/DC	100... 240 AC	24 AC/DC	100... 240 AC
Frequency	Hz	50/60			
Power consumption					
- in operation	W	4.5			
- at rest	W	0.5	0.7	0.5	0.7
- for wire sizing	VA	7.0			
Running time	s	70... 100			
Sound power level	db (A)	45			
Control signal		2-3 point	2-3 point	$\begin{gathered} 0(2) \ldots 10 \mathrm{~V} \text { DC } \\ 0(4) \ldots 20 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 0(2) \ldots 10 \mathrm{~V} \text { DC } \\ 0(4) \ldots 20 \mathrm{~mA} \end{gathered}$
Auxiliary switch rating		3 (1.5) A, 230 V AC			
Life Cycle	cycles	60.000			
Rotation angle					
- operating		0-90 ${ }^{\circ}$			
- limitation		$5-85^{\circ}$ (steps of 5°)			
Protection class		III	11	III	II
Protection degree		IP54			
Working range ${ }^{\circ} \mathrm{C}$		$-20 \ldots+70^{\circ} \mathrm{C}$			
Working range RH		$5 . . .95 \% \mathrm{RH}$, non-condensating			
Storage temperature		$-40 . . .+80^{\circ} \mathrm{C}$			
Maintenance		free			
Weight	g	<1300			
Standards		CE-conformity, RoHs			
Option		suffix S for models with 2 SPDT auxiliary switches			

Electrical wirings for models at $2 / 3$ points

Wiring diagram

$\mathrm{si} \stackrel{\text { ON }}{\mathrm{OFF}} \stackrel{0^{\circ} \curvearrowleft 90^{\circ}}{0^{\circ}} \bumpeq 90^{\circ}$

Auxiliary switches

$3(1,5)$ A 230 Vac
actuator in position 0°

Wiring diagram 24 V AC

Parallel connections

$$
\mathrm{S} 1 \begin{array}{ll}
\mathrm{ON} \\
\mathrm{OFF} & 0^{\circ} \curvearrowleft 90^{\circ} \\
0^{\circ} & 90^{\circ}
\end{array}
$$

Electrical wirings for proportional models

Wiring diagram 230 V AC

Settings DIP switches

OFF: $0(2) \ldots 10 \mathrm{~V}$ ON: 0(4) ... 20 mA

DIP 2
Input signal starting point

OFF: $0 . . .10 \mathrm{~V}$ o $0 . . .20 \mathrm{~mA}$ ON: $2 \ldots . .10 \mathrm{~V}$ o $4 \ldots . .20 \mathrm{~mA}$

DIP 3
Input signal

OFF: $0(2) \ldots 10 \mathrm{~V}$ ON: 0(4)... 20 mA

Auxiliary switches

$3(1,5)$ A 230 Vac
actuator in position 0°

Auxiliary switch adjustment

Factory setting:
switch a at 10°
switch b at 80°
The switching position can be changed manually.

Dimensions (mm)

Description

Damper actuator serie S24 to operate and position air dampers in HVAC systems.
For air dampers up to approx. $4.5 \mathrm{~m}^{2}$

- Nominal voltage $24 \mathrm{Vac} / \mathrm{dc}$ and 100... 240 Vac
- Control: Open-close or 3-point and proportional

Caracteristics: universal spindle clamp fo easy direct mounting, shaft dimensions $\varnothing 10$ to 20 mm round $/ \square 10$ to 16 mm square, minimum shaft length 50 mm , anti-rotation bracket provided for stability, manual over ride by push button, selectable direction of rotation, adjustable angle of rotation, parallel connection up to 10 actuators.

Technical features

Electrical wirings for models at $2 / 3$ points

Wiring diagram
2- point
3-point

$\begin{array}{llll}\perp & \sim & 24 \mathrm{Vac}+/-20 \% & \perp \\ - & \sim\end{array}$
N L 230 Vac $+/-10 \%$ N L

$$
\begin{array}{lll}
\mathrm{s} 1 & 0^{\circ} \mathrm{ON} \\
\text { OFF } & 0^{\circ} \curvearrowleft 90^{\circ} \\
0^{\circ} & 90^{\circ}
\end{array}
$$

Electrical wirings for proportional models

Wiring diagram 230 V AC

Wiring diagram 24 VAC

Auxiliary switches

$3(1,5)$ A 230 Vac
actuator in position 0°

Settings DIP switches

OFF: $0(2) \ldots 10 \mathrm{~V}$ ON: 0(4) ... 20 mA

DIP 2

DIP 3
Input signal

OFF: $0(2) \ldots 10 \mathrm{~V}$ ON: 0(4)... 20 mA

DIP 4
Rotation direction

OFF: With the increase of the signal, the actuator rotate couterclockwise ON: With the increase of the signal, the actuator rotate clockwise

Auxiliary switch adjustment

Factory setting:
switch a at 10°
switch b at 80°
The switching position can be changed manually.

Dimensions (mm)

Description

Damper actuator serie S32 to operate and position air dampers in HVAC systems.
For air dampers up to approx. $6 \mathrm{~m}^{2}$
Nominal voltage $24 \mathrm{Vac} / \mathrm{dc}$ and 100... 240 Vac

- Control: Open-close or 3-point and proportional

Caracteristics: universal spindle clamp fo easy direct mounting, shaft dimensions $\varnothing 10$ to 20 mm round $/ \square 10$ to 16 mm square, minimum shaft length 50 mm , anti-rotation bracket provided for stability, manual over ride by push button, selectable direction of rotation, adjustable angle of rotation, parallel connection up to 10 actuators.

Technical features

Actuator model		S32A	S32B	S32AM	S32BM
Damper area	m^{2}	6			
Nominal torque	Nm	32			
Power supply	V	24 AC/DC	100... 240 AC	24 AC/DC	100... 240 AC
Frequency	Hz	50/60			
Power consumption					
- at rest	W	0,5	0,7	0,5	0,7
- for wire sizing	VA	7,0			
Running time	s	180			
Sound power level	db (A)	45			
Control signal		2-3 point	2-3 point	$\begin{gathered} 0(2) \ldots 10 \mathrm{~V} \text { DC } \\ 0(4) \ldots 20 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 0(2) \ldots 10 \mathrm{~V} \text { DC } \\ 0(4) \ldots 20 \mathrm{~mA} \end{gathered}$
Auxiliary switch rating		$3(1,5)$ A, 230 V AC			
Life Cycle	cycles	60.000			
Rotation angle					
- operating		0-90			
- limitation		$5-85^{\circ}$ (steps of 5°)			
Protection class		III	11	III	11
Protection degree		IP54			
Working range ${ }^{\circ} \mathrm{C}$		$-20 . . .+70^{\circ} \mathrm{C}$			
Working range RH		5...95\% RH, non-condensating			
Storage temperature		$-40 \ldots+80^{\circ} \mathrm{C}$			
Maintenance		free			
Weight	g	1300			
Standards		CE-conformity, RoHs			
Option		suffix S for models with 2 SPDT auxiliary switches			

Electrical wirings for models at $2 / 3$ points

Wiring diagram

Electrical wirings for proportional models

Wiring diagram 230 V AC

Settings DIP switches

Wiring diagram 24 VAC

Parallel connections

$$
\text { S1 ON } \begin{array}{ll}
0^{\circ} \curvearrowleft 90^{\circ} \\
\text { OFF } & 0^{\circ} \curvearrowright 90^{\circ}
\end{array}
$$

$$
(1,5) \text { A } 230 \mathrm{Vac}
$$

$3(1,5)$ A 230 Vac
actuator in position 0°

Auxiliary switches

$3(1,5)$ A 230 Vac
actuator in position 0°

DIP 1 Feedback signal	DIP 2 Input signal starting point
ON \square 1234	
OFF: $0(2) \ldots 10 \mathrm{~V}$	OFF: $0 . . .10 \mathrm{~V}$ o 0... 20 mA
ON: 0(4)... 20 mA	ON: 2... 10 V o 4... 20 mA

DIP 4
S2
Input signal

OFF: $0(2) . . .10 \mathrm{~V}$ ON: 0(4) ... 20 mA

Rotation direction Rotation direction

OFF: With the increase of the signal, the actuator rotate couterclockwise ON: With the increase of the signal, the actuator rotate clockwise

Auxiliary switch adjustment

Factory setting:
switch a at 10°
switch b at 80°
The switching position can be changed manually.

Dimensions (mm)

Description

Technical features

Actuator model		S8AF	S8BF	S8AMF	S8BMF
Damper area	m^{2}	1,5			
Nominal torque	Nm	8			
Power supply	V	24 AC/DC	100... 240 AC	24 AC/DC	100... 240 AC
Frequency	Hz	50/60			
Power consumption					
- in operation	W	12			
- at rest	W	0.5	0.7	0.5	0.7
- for wire sizing	VA	7.0			
Running time	s	8			
Sound power level	max. db (A)	65			
Control signal		2-3 point	2-3 point	$\begin{gathered} 0(2) \ldots 10 \mathrm{~V} \text { DC } \\ 0(4) \ldots 20 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 0(2) \ldots 10 \mathrm{~V} \text { DC } \\ 0(4) \ldots 20 \mathrm{~mA} \end{gathered}$
Auxiliary switch rating		3 (1.5) A, 230 V AC			
Life Cycle	cicli	60.000			
Rotation angle					
- operating		0-90 ${ }^{\circ}$			
- limitation		$5-85^{\circ}$ (steps of 5°)			
Protection class		III	11	III	11
Protection degree		IP54			
Working range ${ }^{\circ} \mathrm{C}$		$-20 . . .+70^{\circ} \mathrm{C}$			
Working range RH		$5 . . .95 \% \mathrm{RH}$, non-condensating			
Storage temperature		$-40 \ldots+80^{\circ} \mathrm{C}$			
Maintenance		free			
Weight	g	<1300			
Standards		CE-conformity, RoHs			
Option		suffix S for models with 2 SPDT auxiliary switches			

Electrical wirings for models at 2 / 3 points

Wiring diagram

$$
\begin{array}{lll}
\mathrm{s} 1 & 0^{\circ} \text { ON } & 0^{\circ} \text { OFF } \\
0^{\circ} \curvearrowleft 90^{\circ} \\
\hline 0^{\circ}
\end{array}
$$

Electrical wirings for proportional models

Wiring diagram 230 V AC

Settings

DIP 1
Feedback signal

OFF: $0(2) \ldots . .10 \mathrm{~V}$ ON: 0(4)... 20 mA

DIP 2
Input signal starting point

OFF: $0 \ldots . .10 \mathrm{~V}$ o $0 \ldots . .20 \mathrm{~mA}$ ON: 2... 10 V o $4 . . .20 \mathrm{~mA}$

Wiring diagram 24 V AC

Parallel connections

Auxiliary switches

$3(1,5)$ A 230 Vac
actuator in position 0°

Setting DIP

DIP 3
Input signal

OFF: $0(2) \ldots . .10 \mathrm{~V}$ ON: 0(4)... 20 mA

DIP 4
Rotation direction

OFF: With the increase of the signal, the actuator rotate couterclockwise ON : With the increase of the signal, the actuator rotate clockwise

Auxiliary switch adjustment

Factory setting
switch a at 10°
switch b at 80°
The switching position can
be changed manually.

Dimensions (mm)

Description

Damper actuator serie S16 to operate and position air dampers in HVAC systems.
For air dampers up to approx. $3 \mathrm{~m}^{2}$

- Nominal voltage $24 \mathrm{Vac} / \mathrm{dc}$ and 100... 240 Vac
- Control: Open-close or 3-point and proportional
- Caracteristics: universal spindle clamp fo easy direct mounting, shaft dimensions $\varnothing 10$ to 20 mm round $/ \square 10$ to 16 mm square, minimum shaft length 50 mm , anti-rotation bracket provided for stability, manual over ride by push button, selectable direction of rotation, adjustable angle of rotation, parallel connection up to 10 actuators.

Technical features

Actuator model		S16A	S16B	S16AM	S16BM
Damper area	m^{2}	3			
Nominal torque	Nm	16			
Power supply	V	24 AC/DC	100... 240 AC	24 AC/DC	100... 240 AC
Frequency	Hz	50/60			
Power consumption					
- in operation	W	12			
- at rest	W	0.5	0.7	0.5	0.7
- for wire sizing	VA	7.0			
Running time	s	16			
Sound power level	db (A)	65			
Control signal		2-3 point	2-3 point	$\begin{gathered} 0(2) \ldots 10 \mathrm{~V} \text { DC } \\ 0(4) \ldots 20 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 0(2) \ldots 10 \mathrm{~V} \text { DC } \\ 0(4) \ldots 20 \mathrm{~mA} \end{gathered}$
Auxiliary switch rating		3 (1.5) A, 230 V AC			
Life Cycle	cycles	60.000			
Rotation angle					
- operating		0-90 ${ }^{\circ}$			
- limitation		$5-85^{\circ}$ (steps of 5°)			
Protection class		III	II	III	II
Protection degree		IP54			
Working range ${ }^{\circ} \mathrm{C}$		$-20 . .+70^{\circ} \mathrm{C}$			
Working range RH		$5 . . .95 \%$ RH, non-condensating			
Storage temperature		$-40 . . .+80^{\circ} \mathrm{C}$			
Maintenance		free			
Weight	g	<1300			
Standards		CE-conformity, RoHs			
Option		suffix S for models with 2 SPDT auxiliary switches			

S16F

Electrical wirings for models at $2 / 3$ points

Wiring diagram

S 1 | ON |
| :--- |
| OFF |
| $0^{\circ} \curvearrowleft$ |
| 0° | 90°

Auxiliary switches

$3(1,5)$ A 230 Vac
actuator in position 0°

Parallel connections

$$
\begin{array}{lll}
\mathrm{S} 1 & \mathrm{ON} & 0^{\circ} \curvearrowleft 90^{\circ} \\
\mathrm{OFF} & 0^{\circ} \curvearrowright 90^{\circ}
\end{array}
$$

Electrical wirings for proportional models

Wiring diagram 230 V AC

Wiring diagram 24 V AC

Auxiliary switches

$3(1,5)$ A 230 Vac
actuator in position 0°

Settings

DIP 1
Feedback signal

OFF: 0(2)... 10 V ON: 0(4) ... 20 mA

DIP 2
Input signal starting point

OFF: $0 . . .10$ V o $0 . . .20 \mathrm{~mA}$ ON: 2... 10 V o $4 \ldots . .20 \mathrm{~mA}$

Setting DIP

DIP 3
Input signal

OFF: $0(2) . . .10 \mathrm{~V}$ ON: 0(4)... 20 mA

DIP 4
Rotation direction

OFF: With the increase of the signal, the actuator rotate couterclockwise ON: With the increase of the signal, the actuator rotate clockwise

Auxiliary switch adjustment

Factory setting:
switch a at 10°
switch b at 80°
The switching position can
be changed manually.

Dimensions (mm)

Description

Damper actuator serie SR2 to operate and position air dampers in HVAC systems.
For air dampers up to approx. $0,5 \mathrm{~m}^{2}$
Nominal voltage $24 \mathrm{Vac} / \mathrm{dc}$ and 230 Vac
Control: 2-point, on-off and proportional
Caracteristics: universal spindle clamp fo easy direct mounting, shaft dimensions max $\varnothing 12 \mathrm{~mm}$,$8 \times 8 \mathrm{~mm}$ minimum shaft length 80 mm , anti-rotation bracket provided for stability,
selectable direction of rotation, adjustable angle of rotation, 1 m cable connection.

Technical features

Electrical wirings

Wiring diagram On/Off

Wiring diagram proportional

Auxiliary switches

$3(1,5) A, 250$ V AC

Settings

Limitation of rotation angle from 5° to 85°

Dimensions (mm)

Description

Damper actuator serie SR3 to operate and position air dampers in HVAC systems.
For air dampers up to approx. $0,5 \mathrm{~m}^{2}$
Nominal voltage $24 \mathrm{Vac} / \mathrm{dc}$ and 230 Vac
Control: 2-point, on-off

- Caracteristics: universal spindle clamp fo easy direct mounting, shaft dimensions$12 \times 12 \mathrm{~mm}$ minimum shaft length $>50 \mathrm{~mm}$, anti-rotation bracket provided for stability,
selectable direction of rotation, adjustable angle of rotation, 1 m cable connection.

Technical features

Electrical wirings

Settings

Limitation of rotation angle from 5° to 85°

For 5° to 45° (diagram 1)

1. Loosen screw of the mechanical limiter plate.
2. Move the limiter plate to the appropriate position.
3. Tighten the screw.

For 45° to 85° (diagram 2)

1. Release the secure ring of the adapter.
2. Remove the adapter and turn negative 45° as shown.
3. Insert adapter and secure the adapter ring.
4. Loosen screw of the mechanical limiter plate.
5. Move the limiter plate to the appropriate position.
6. Tighten the screw.

Dimensions (mm)

Description

Damper actuator serie SR5 to operate and position air dampers in HVAC systems.
For air dampers up to approx. $1 \mathrm{~m}^{2}$
Nominal voltage $24 \mathrm{Vac} / \mathrm{dc}$ and 230 Vac
Control: 2-point, on-off and proportional
Caracteristics: universal spindle clamp fo easy direct mounting, shaft dimensions $\varnothing 10$ to 16 mm round $/ \square 7$ to 11 mm square, minimum shaft length 80 mm , anti-rotation bracket provided for stability, selectable direction of rotation, adjustable angle of rotation, 1 m cable connection.

Technical features

Actuator model		SR5A	SR5AM	SR5B
Damper area	m^{2}	1		
Nominal torque	Nm	5		
Power supply	V	24 AC/DC	24 AC/DC	100...240 AC
Frequency	Hz	50/60		
Power consumption				
- in operation	W	5.0	5.0	6.0
- at rest	W		2.5	
- for wire sizing	VA	7.0		
Running time for motor	s	50... 70		
Running time for spring	s	<20		
Sound power level	db (A)	<45		
Control signal		2 point, on-off	$0 . .10 \mathrm{~V}$ DC	2 point, on-off
Auxilary switch rating		3 (1.5) A, AC 250 V		
Life Cycle	cycles	60.000		
Rotation angle				
- operating		90° (95 ${ }^{\circ}$ mechanical)		
- limitation		$5-85^{\circ}$ (steps of 5°)		
Protection class		III	III	11
Protection degree		IP54		
Working range ${ }^{\circ} \mathrm{C}$		$-20 . .+50^{\circ} \mathrm{C}$		
Working range RH		$5 . . .95 \% \mathrm{RH}$, non-condensating		
Storage temperature		$-30 \ldots+80^{\circ} \mathrm{C}$		
Manual override		by means of hand crank and locking switch		
Maintenance		free		
Weight	g	1800	1800	1900
Standards		CE-conformity, RoHs		
Option		suffix S for models with 2 SPDT auxiliary switches		

Electrical wirings

Wiring diagram On/Off

Wiring diagram proportional

Auxiliary switches

Settings

Limitation of rotation angle from 5° to 85°

For 5° to 45° (diagram 1)

1. Loosen screw of the mechanical limiter plate.
2. Move the limiter plate to the appropriate position.
3. Tighten the screw.

For 45° to 85° (diagram 2)

1. Release the secure ring of the adapter.
2. Remove the adapter and turn negative 45° as shown.
3. Insert adapter and secure the adapter ring.
4. Loosen screw of the mechanical limiter plate.
5. Move the limiter plate to the appropriate position.
6. Tighten the screw.

Manual ovverride: By using the hand crank the damper ca be actuated manually and engaged with the locking switch at any position. Unlocking is carried out manually or automatically by applying the operating voltage.

Dimensions (mm)

Description

Damper actuator serie SR10 to operate and position air dampers in HVAC systems.
For air dampers up to approx. $2 \mathrm{~m}^{2}$
Nominal voltage $24 \mathrm{Vac} / \mathrm{dc}$ and 230 Vac
Control: 2-point, on-off and proportional
Caracteristics: universal spindle clamp fo easy direct mounting, shaft dimensions $\varnothing 10$ to 21 mm round / $\square 6$ to 15 mm square, minimum shaft length 80 mm , anti-rotation bracket provided for stability, selectable direction of rotation, adjustable angle of rotation, 1 m cable connection.

Technical features

Actuator model		SR10A	SR10AM	SR10B
Damper area	m^{2}	2		
Nominal torque	Nm	10		
Power supply	V	24 AC/DC	24 AC/DC	100... 240 AC
Frequency	Hz	50/60		
Power consumption				
- in operation	W	5.0	5.0	6.5
- at rest	W		2.5	
- for wire sizing	VA	10.0		
Running time for motor	s	60... 100		
Running time for spring	s	25		
Sound power level	$\mathrm{db}(\mathrm{A})$	50 (motor), 62 (spring)		
Control signal		2 point, on-off	$0 . . .10 \mathrm{~V}$ DC	2 point, on-off
Auxilary switch rating		$3(1,5)$ A, AC 250 V		
Life Cycle	cycles	60.000		
Rotation angle				
- operating		0-90		
- limitation		$5-85^{\circ}$ (steps of 5°)		
Protection class		III	III	11
Protection degree		IP54		
Working range ${ }^{\circ} \mathrm{C}$		$-20 . . .+50^{\circ} \mathrm{C}$		
Working range RH		$5 . . .95 \% \mathrm{RH}$, non-condensating		
Storage temperature		$-30 \ldots+80^{\circ} \mathrm{C}$		
Manual override		by means of hand crank and locking switch (only ON-OFF models)		
Maintenance		free		
Weight	g	2300		
Standards		CE-conformity, RoHs		
Option		suffix S for models with 2 SPDT auxiliary switches		

SR10

Electrical wirings

Wiring diagram, On-Off

Wiring diagram, Proportional

Auxiliary switches

Settings

45° to 85° Adjustment

For 5° to 45° (diagram 1)

1. Loosen screw of the mechanical limiter plate.
2. Move the limiter plate to the appropriate position.
3. Tighten the screw.

For 45° to 85° (diagram 2)

1. Release the secure ring of the adapter.
2. Remove the adapter and turn negative 45° as shown.
3. Insert adapter and secure the adapter ring.
4. Loosen screw of the mechanical limiter plate.
5. Move the limiter plate to the appropriate position.
6. Tighten the screw.

Manual ovverride: By using the hand crank the damper ca be actuated manually and engaged with the locking switch at any position. Unlocking is carried out manually or automatically by applying the operating voltage.

Dimensions (mm)

Description

Damper actuator serie SR15 to operate and position air dampers in HVAC systems.
For air dampers up to approx. $3 \mathrm{~m}^{2}$
Nominal voltage $24 \mathrm{Vac} / \mathrm{dc}$ and 230 Vac
Control: 2-point, on-off and proportional
Caracteristics: universal spindle clamp fo easy direct mounting, shaft dimensions $\varnothing 10$ to 19 mm round / ם 10 to 16 mm square, minimum shaft length 80 mm , anti-rotation bracket provided for stability, selectable direction of rotation, adjustable angle of rotation, 1 m cable connection.

Technical features

Actuator model		SR15A	SR15AM	SR15B
Damper area	m^{2}		3	
Nominal torque	Nm		15	
Power supply	V	24 AC/DC	24 AC/DC	240 AC
Frequency	Hz		50/60	
Power consumption				
- in operation	W	6,5	6,5	7,0
- at rest	W		3,0	
- for wire sizing	VA		10,0	
Running time for motor	s		110... 130	
Running time for spring	s		25	
Sound power level	db (A)		motor), 62 (sp	
Control signal		2 point, on-off	0... 10 V DC	2 point, on-off
Auxilary switch rating			(1,5) A, AC 250	
Life Cycle	cicli		60.000	
Rotation angle				
- operating			0-90	
- limitation			85° (steps of 5°	
Protection class		III	III	11
Protection degree		IP54		
Working range ${ }^{\circ} \mathrm{C}$		$-20 . . .+50^{\circ} \mathrm{C}$		
Working range RH		$5 . . .95 \% \mathrm{RH}$, non-condensating		
Storage temperature		$-30 . . .+80^{\circ} \mathrm{C}$		
Manual override		by means of hand crank and locking switch (only ON-OFF models)		
Maintenance		free		
Weight	g	2700		
Standards		CE-conformity, RoHs		
Option		suffix S for models with 2 SPDT auxiliary switches		

SR15

Electrical wirings

Wiring diagram, On-Off

Wiring diagram, Proportional

Auxiliary switches

Settings

Limitation of rotation angle from 5° to 85°

Manual ovverride: By using the hand crank the damper ca be actuated manually and engaged with the locking switch at any position. Unlocking is carried out manually or automatically by applying the operating voltage.

Dimensions (mm)

Description

Damper actuator serie SR20 to operate and position air dampers in HVAC systems.
For air dampers up to approx. $4 \mathrm{~m}^{2}$
Nominal voltage $24 \mathrm{Vac} / \mathrm{dc}$ and 230 Vac
Control: 2-point, on-off and proportional
Caracteristics: universal spindle clamp fo easy direct mounting, shaft dimensions $\varnothing 10$ to 19 mm round / ם 10 to 16 mm square, minimum shaft length 80 mm , anti-rotation bracket provided for stability, selectable direction of rotation, adjustable angle of rotation, 1 m cable connection.

Technical features

Actuator model		SR20A	SR20AM	SR20B
Damper area	m^{2}		4	
Nominal torque	Nm		20	
Power supply	V	24 AC/DC	24 AC/DC	240 AC
Frequency	Hz		50/60	
Power consumption				
- in operation	W	6,5	6,5	7,0
- at rest	W		3,0	
- for wire sizing	VA		10,0	
Running time for motor	s		<180	
Running time for spring	s		<30	
Sound power level	db (A)		(motor), 62 (sp	
Control signal		2 point, on-off	0... 10 V DC	2 point, on-off
Auxilary switch rating			(1,5) A, AC 250	
Life Cycle	cicli		60.000	
Rotation angle				
- operating			0-90	
- limitation			85° (steps of 5°	
Protection class		III	III	11
Protection degree		IP54		
Working range ${ }^{\circ} \mathrm{C}$		$-20 \ldots+50^{\circ} \mathrm{C}$		
Working range RH		$5 . . .95 \%$ RH, non-condensating		
Storage temperature		$-30 \ldots+80^{\circ} \mathrm{C}$		
Manual override		by means of hand crank and locking switch (only ON-OFF models)		
Maintenance		free		
Weight	g	2700		
Standards		CE-conformity, RoHs		
Option		suffix S for models with 2 SPDT auxiliary switches		

SR20

Electrical wirings

Wiring diagram, On-Off

BLK	RED
1	2

Wiring diagram, Proportional

Auxiliary switches

Settings

Limitation of rotation angle from 5° to 85°

For 5° to 45° (diagram 1)

1. Loosen screw of the mechanical limiter plate.
2. Move the limiter plate to the appropriate position.
3. Tighten the screw.

For 45° to 85° (diagram 2)

1. Release the secure ring of the adapter.
2. Remove the adapter and turn negative 45° as shown.
3. Insert adapter and secure the adapter ring.
4. Loosen screw of the mechanical limiter plate.
5. Move the limiter plate to the appropriate position.
6. Tighten the screw.

Manual ovverride: By using the hand crank the damper ca be actuated manually and engaged with the locking switch at any position. Unlocking is carried out manually or automatically by applying the operating voltage.

Dimensions (mm)

Description

Damper actuator serie ST3 to operate and position air dampers in HVAC systems.
For air dampers up to approx. 0,6 m²
Nominal voltage 24 V AC/DC and 100... 240 V AC
Control: 2-point, on-off
Caracteristics: shaft dimensions standard $\square 12 / 12 \mathrm{~mm}$ square, minimum shaft length 90 mm , antirotation bracket provided for stability, selectable direction of rotation, 2 not adjustable SPDT auxiliary switches, 1 m cable connection, thermal duct sensor included.

Technical features

Electrical wirings

Auxiliary switches

Thermal sensor

Manual override

Dimensions (mm)

Thermal sensor

The thermal sensor controls the temperature in two areas: room and duct. The damper actuator will open when the temperature reaches $72^{\circ} \mathrm{C}$ in one of the two zones. There is a test button on the sensor.

Description

Damper actuator serie ST5 to operate and position air dampers in HVAC systems.
For air dampers up to approx. $1 \mathrm{~m}^{2}$

- Nominal voltage 24 V AC/DC and 100... 240 V AC

Control: 2-point, on-off

- Caracteristics: shaft dimensions standard $\square 12 / 12 \mathrm{~mm}$ square, minimum shaft length 90 mm , antirotation bracket provided for stability, selectable direction of rotation, 2 not adjustable SPDT auxiliary switches, 1 m cable connection, thermal duct sensor included.

Technical features

Electrical wirings

Auxiliary switches

Setting

Dimensions (mm)

Thermal sensor

The thermal sensor controls the temperature in two areas: room and duct. The damper actuator will open when the temperature reaches $72^{\circ} \mathrm{C}$ in one of the two zones. There is a test button on the sensor.

Description

Damper actuator serie ST10 to operate and position air dampers in HVAC systems.
For air dampers up to approx. $1,5 \mathrm{~m}^{2}$
Nominal voltage 24 V AC/DC and 100... 240 V AC
Control: 2-point, on-off
Caracteristics: shaft dimensions $\square 12 / 12 \mathrm{~mm}$ square, minimum shaft length 90 mm , anti-rotation bracket provided for stability, selectable direction of rotation, 2 not adjustable SPDT auxiliary switches, 1 m cable connection, thermal duct sensor included.

Technical features

Electrical wirings

Wiring diagram

$\perp \quad \sim 24 \mathrm{VAC} \pm 10 \%$
$-\quad+24 \vee D C \pm 10 \%$
N L 100... 240 V AC
$\mathrm{S} 1 \begin{array}{ll}\mathrm{ON} \\ \mathrm{OFF} & 0^{\circ} 0^{\circ} \curvearrowleft 90^{\circ} \\ 0^{\circ}\end{array}$

Auxiliary switches

Manual override

Dimensions (mm)

Thermal sensor

The thermal sensor controls the temperature in two areas: room and duct. The damper actuator will open when the temperature reaches $72^{\circ} \mathrm{C}$ in one of the two zones. There is a test button on the sensor.

Description

Damper actuator serie ST15 to operate and position air dampers in HVAC systems.
For air dampers up to approx. $3 \mathrm{~m}^{2}$
Nominal voltage 24 V AC/DC and 100... 240 V AC
Control: 2-point, on-off
Caracteristics: shaft dimensions $\square 12 / 12 \mathrm{~mm}$ square, minimum shaft length 90 mm , antirotation bracket provided for stability, selectable direction of rotation, 2 not adjustable SPDT auxiliary switches, 1 m cable connection, thermal duct sensor included.

Technical features

Actuator model	ST15AT	ST15BT

Damper area	m^{2}		3
Nominal torque	Nm	$24 \mathrm{AC} / \mathrm{DC}$	
Power supply	V		
Frequency	Hz	$50 / 60$	
Power consumption			
- in operation	W	8	
- at rest	W	2,5	
- for wire sizing	VA	7,0	
Running time for motor	s	<150	
Running time for spring	s	<25	
Sound power level	$\mathrm{db}(\mathrm{A})$	45	

Control signal
Auxiliary switch rating

Life cycle

cycles

$$
3(1,5) \mathrm{A}, \mathrm{AC} 230 \mathrm{~V}
$$

$$
60.000
$$

Rotation angle

- operating	90° (95 ${ }^{\circ}$ mechanical)	
- limitation	$5-85^{\circ}$ (steps of 5°)	
Thermal temperature trip	> 72°	
Protection class	III	II
Protection degree	IP54	
Working temperature ${ }^{\circ} \mathrm{C}$	$-20 . .+50^{\circ} \mathrm{C}$	
Working humidity RH	5...95\% RH, non-condensating	
Storage temperature range	$-30 \ldots+80^{\circ} \mathrm{C}$	
Maintenance	free	
Weight g	<2600	
Standards	CE-conformity, RoHs	

Electrical wirings

Wiring diagram

$\perp \quad \sim 24 \mathrm{VAC} \pm 10 \%$

- $\quad+24 \vee D C \pm 10 \%$

N L 100... 240 VAC
S1 ON $\begin{aligned} & \text { OFF } \\ & 0^{\circ} \curvearrowright 90^{\circ} \\ & 0^{\circ}\end{aligned}$

Auxiliary switches

Dimensions (mm)

Setting

Thermal sensor

Thermal sensor

The thermal sensor controls the temperature in two areas: room and duct. The damper actuator will open when the temperature reaches $72^{\circ} \mathrm{C}$ in one of the two zones. There is a test button on the sensor.

Description

Damper actuator serie ST20 to operate and position air dampers in HVAC systems.
For air dampers up to approx. $4 \mathrm{~m}^{2}$
Nominal voltage 24 V AC/DC and 100... 240 V AC
Control: 2-point, on-off
Caracteristics: shaft dimensions $\square 12 / 12 \mathrm{~mm}$ square, minimum shaft length 90 mm , antirotation bracket provided for stability, selectable direction of rotation, 2 not adjustable SPDT auxiliary switches, 1 m cable connection, thermal duct sensor included.

Technical features

Actuator model	ST20AT	ST20BT

Damper area	m^{2}	4		
Nominal torque	Nm	20		
Power supply	V	$24 \mathrm{AC} / \mathrm{DC}$		$100 \ldots 240 \mathrm{AC}$
Frequency	Hz		$50 / 60$	

Power consumption

- in operation	W	8
- at rest	W	2,5
- for wire sizing	VA	7,0
Running time for motor	s	<180
Running time for spring	s	<30
Sound power level	db (A)	<45

Control signal
Auxiliary switch rating
Life cycle
cycles

$$
3(1,5) \mathrm{A}, \mathrm{AC} 230 \mathrm{~V}
$$

60.000

Rotation angle

Electrical wirings

Wiring diagram

$\perp \quad \sim 24 \mathrm{VAC} \pm 10 \%$

- $\quad+24 V D C \pm 10 \%$

N L 100... 240 VAC
$\mathrm{S} 1 \begin{array}{ll}\mathrm{ON} \\ \mathrm{OFF} & 0^{\circ} 0^{\circ} \curvearrowleft 90^{\circ} \\ 90^{\circ}\end{array}$

Auxiliary switches

Dimensions (mm)

Thermal sensor

Setting

Thermal sensor

The thermal sensor controls the temperature in two areas: room and duct. The damper actuator will open when the temperature reaches $72^{\circ} \mathrm{C}$ in one of the two zones. There is a test button on the sensor.

Description

Damper actuator serie SF10 to operate and position air dampers in HVAC systems.
For air dampers up to approx. $1,5 \mathrm{~m}^{2}$
Nominal voltage 24 V AC/DC and 100... 240 V AC
Control: 2 and 3-point

- Caracteristics: shaft dimensions standard $\square 12 / 12 \mathrm{~mm}$ square, minimum shaft length 90 mm , antirotation bracket provided for stability, selectable direction of rotation, 2 not adjustable SPDT auxiliary switches, 1 m cable connection.

Technical features

Electrical wirings

Wiring diagram

Auxiliary switches

Setting

Dimensions (mm)

Description

Damper actuator serie SF15 to operate and position air dampers in HVAC systems.
For air dampers up to approx. $2 \mathrm{~m}^{2}$
Nominal voltage 24 V AC/DC and 100... 240 V AC
Control: 2 and 3-point

- Caracteristics: shaft dimensions standard $\square 12 / 12 \mathrm{~mm}$ square, minimum shaft length 90 mm , antirotation bracket provided for stability, selectable direction of rotation, 2 not adjustable SPDT auxiliary switches, 1 m cable connection.

Technical features

Electrical wirings

Wiring diagram

Auxiliary switches

Setting

Dimensions (mm)

Description

Damper actuator serie SF30 to operate and position air dampers in HVAC systems.
For air dampers up to approx. $4 \mathrm{~m}^{2}$
Nominal voltage 24 V AC/DC and 100... 240 V AC
Control: 2 and 3-point
Caracteristics: shaft dimensions standard $\square 12 / 12 \mathrm{~mm}$ square, minimum shaft length 90 mm , antirotation bracket provided for stability, selectable direction of rotation, 2 not adjustable SPDT auxiliary switches, 1 m cable connection.

Technical features

Electrical wirings

Wiring diagram

Auxiliary switches

Setting

Dimensions (mm)

Description

Damper actuator SX serie to operate and position air dampers in HVAC systems.

- For air dampers up to approx. $3 \mathrm{~m}^{2}$ up to $9 \mathrm{~m}^{2}$

Nominal voltage $24 \mathrm{Vac} / \mathrm{dc}$ and 230 Vac
Control: 3-point

- Caracteristics: universal spindle clamp fo easy direct mounting, shaft dimensions $\varnothing 10 . .16 \mathrm{~mm} /$
$7 \ldots 11 \mathrm{~mm}$ square, minimum shaft length 80 mm , anti-rotation bracket provided for stability, selectable direction of rotation, adjustable angle of rotation, 1 m cable connection.

Technical features

Directives:

IEC60079-0:2011, EN60079-0:2012 electrical apparatus in explosive gas atmosphere General requirements.
IEC60079-1:2007, EN60079-1:2007 electrical apparatus in explosive gas atmosphere part1: flameproof " d".
IEC60079-31:2008, EN60079-31:2009 Equipment dust ignition protection by enclosure " t ".

Electrical wirings

Use and maintenance

- Cable gland and thread on the $\mathrm{M} 16 \times 1.5$ housing, cable diameter from 6 to 8 mm . When the actuator is installed on site, the cable gland must be installed by the user and whose degree of protection must not be less than II2D Ex tb IIIC T85 ${ }^{\circ} \mathrm{C}$ Db.
- Earth terminal tightening torque 2 Nm .
- Tightening torque of the flameproof joint 3,2 Nm.
- External ground bolt $M 4 \times 6$, by pressing the $4 \mathrm{~mm}^{2}$ conductor.
- Disassembly is prohibited without authorization. Do not open with the power on. Do not open the lid in the presence of explosive gas. Use a damp cloth when opening.
- Repair of flanged joints must be performed in accordance with the structural specifications provided by the manufacturer. Repairs must not be carried out on the basis of the specifications in table 3 and table 4 of the EN 60079-1: 2007 directive.
- The cable gland must have a degree of protection compatible with the intended use.
- During assembly, operation and maintenance, the operator must follow the requirements of the EN 60079-14 standard and this instruction manual.
- Repair and overhaul must comply with EN 60079-19.

Dimensions (mm)

93

Description

Damper actuator SRX serie to operate and position air dampers in HVAC systems.

- For air dampers up to approx. $1 \mathrm{~m}^{2}$ up to $4,5 \mathrm{~m}^{2}$

Nominal voltage $24 \mathrm{Vac} / \mathrm{dc}$ and 230 Vac
Control: 2-point with spring return

- Caracteristics: universal spindle clamp fo easy direct mounting, shaft dimensions $\varnothing 10 . .16 \mathrm{~mm} /$ $7 \ldots 11 \mathrm{~mm}$ square, minimum shaft length 80 mm , anti-rotation bracket provided for stability, selectable direction of rotation, adjustable angle of rotation, 1 m cable connection.

Technical features

Actuator model		SRX5A	SRX5B	SRX10A	SRX10B	SRX15A	SRX15B
Damper area	m^{2}	1				4,5	
Nominal torque	Nm	5		10		15	
Power supply	V	24 AC/DC	230 V AC	24 AC/DC	230 V AC	24 AC/DC	230 V AC
Frequency	Hz	50/60					
Power consumption - in operation - at rest	W W						
Running time for motor	s	< 150					
Running time for spring	s	<30					
Sound power level	$\mathrm{db}(\mathrm{A})$	50... 62					
Control signal		2 points, on-off					
Auxilary switch rating		$3(1,5)$ A, AC 250 V					
Life Cycle	cycles	> 70.000					
Rotation angle		Max 93°					
Protection class		III	II	III	II	III	II
Protection degree		IP66					
Working range ${ }^{\circ} \mathrm{C}$		$-20 . . .60^{\circ} \mathrm{C}$					
Working range RH		5...95\% RH, non-condensating					
Storage temperature		$-40 . . .+70^{\circ} \mathrm{C}$					
Maintenance		free					
Standards		Conformità CE, RoHs, ATEX 2014/34/UE					
ATEX		ExdIIB T6 Gb Ex IIIC $785^{\circ} \mathrm{C} D b$					
Application		Zone 1 and zone 2, zone 21 and zone 22					

Directives:

IEC60079-0:2011, EN60079-0:2012 electrical apparatus in explosive gas atmosphere General requirements. IEC60079-1:2007, EN60079-1:2007 electrical apparatus in explosive gas atmosphere part1: flameproof " d ". IEC60079-31:2008, EN60079-31:2009 Equipment dust ignition protection by enclosure " t ".

Electrical wirings

Use and maintenance

- Cable gland and thread on the M16 $\times 1.5$ housing, cable diameter from 6 to 8 mm . When the actuator is installed on site, the cable gland must be installed by the user and whose degree of protection must not be less than II2D Ex tb IIIC T85 ${ }^{\circ} \mathrm{C}$ Db.
- Earth terminal tightening torque 2 Nm .
- Tightening torque of the flameproof joint 3,2 Nm.
- External ground bolt $M 4 \times 6$, by pressing the $4 \mathrm{~mm}^{2}$ conductor.
- Disassembly is prohibited without authorization. Do not open with the power on. Do not open the lid in the presence of explosive gas. Use a damp cloth when opening.
- Repair of flanged joints must be performed in accordance with the structural specifications provided by the manufacturer. Repairs must not be carried out on the basis of the specifications in table 3 and table 4 of the EN 60079-1: 2007 directive.
- The cable gland must have a degree of protection compatible with the intended use.
- During assembly, operation and maintenance, the operator must follow the requirements of the EN 60079-14 standard and this instruction manual.
- Repair and overhaul must comply with EN 60079-19.

Dimensions (mm)

95

0 0
 0000

greenline

motorized valves

Description

The motorized valve serie VB are used in heating and air-conditioning systems for the flow control of heated or chilled water and are motorized by the electrothermal actuator serie SVB. The small sizes allow easy installation in fan coils and terminal unit coils. The actuator-valve assembly is easily made thanks to its threaded ring nut, which allows a comfortable cable positioning.

Technical specifications valve VB

Medium	Hot and chilled water, water with up to 50% glycol
Fluid temperature	$+2 \ldots+120^{\circ} \mathrm{C}$
Nominal pressure	16 bar
Stroke	3 mm
Leakage	Perfect sealing
Connection type	Male thread
Installation position	See drawing
Maintenance	Free
Valve body	Forged brass
Valve stem	Stainless steel Aisi 301
Sealing	HNBR
Dimensions and weights	See schedule

Dimensions and weights
See schedule

Models	Thread	Ways	KVs	Max differential pressure (bar)
VB215	G 1/2	2	1.6	2.5
VB220	G $3 / 4$	2	2.5	2.5
VB225	G 1"	2	4,5	1.0
VB315	G 1/2	3	1.6	2.5
VB320	G 3/4	3	2.5	2.5
VB325	G 1"	3	4,5	1.0
VB415	G 1/2	$3(4$ ports)	1.6	2.5
VB420	G 3/4	$3(4$ ports)	2.5	2.5
VB425	G 1"	$3(4$ ports)	4.5	1.0

Technical specifications actuator SVB

Power consumption
Stroke
Running time
Connection
Materials
Cable
Protection degree
Protection class
Working range RH
Working range ${ }^{\circ} \mathrm{C}$
Storage temperature
Standards

2,5 W (by starting)
4 mm ($4,5 \mathrm{~mm}$ proportional version)
approx. 5 min .
Metal ring M30 x 1.5
Self-extinguishing V0
PVC $2 \times 0,50 \mathrm{~mm}^{2}$
IP54
II
$0 . .95 \% \mathrm{RH}$, non-condensing
$-5 \ldots+50^{\circ} \mathrm{C}$
$-25 \ldots+60^{\circ} \mathrm{C}$
CE-conformity, RoHS

VB, SVB

Models	Power supply	Action	Force	Contact rating
SVB230	230 V AC	2 punti / on/off	110 N	-
SVB230C	230 V AC	2 punti / on/off	110 N	Max 700 m A - 250 V AC
SVB24	24 V AC	2 punti / on/off	110 N	-
SVB24C	24 V AC	2 punti / on/off	110 N	Max 700 m A - 250 V AC
SVB24M	24 V AC	Modulante	170 N	-

Installation

Before mounting the valve body be sure that the pipes are clean, free of soldering scraps and that the plug can glide freely. Note direction of flow reported on the valve body. 3-way-valves should be preferably used as mixing valves.
The mounting diagrams are as following:

2-way valve

3-way valve

3-way valve with 4 ports

Wiring

2 points / on/off

Proportional

M = Brown (24 VAC - 50/60 Hz) $W=$ White (Signal 0-10 Vcc) $\mathrm{B}=\mathrm{Blue}$ (Common)

Indication

Stroke indicator

On the actuator there is a transparent window where the position of the valve stroke is indicated:
Red: Actuator off, direct way of valve close
Black: Actuator on, direct way of valve open

Dimensions (mm)

Models	Way	L	G	H	I	J
VB215	2	53	G 1/2		88	
VB220	2	56	G $3 / 4$		88	
VB225	2	65	G 1		88	
VB315	3	53	G 1/2	88	30	
VB320	3	56	G 3/4		88	30
VB325	3	65	G 1		90	35
VB415	3 (4 port)	53	G 1/2	40	88	
VB420	3 (4 port)	56	G 3/4	40	88	
VB425	3 (4 port)	65	G 1	50	90	

Description

The AVC series provides floating or proportional control in HVAC applications. The compact design of this actuator makes it suitable for installation in confined spaces, such as fan coil, chilled ceiling, manifolds, etc.
The AVC series actuator is designed for field mounting onto VB terminal unit valves.
Due to the innovative concept of different strokes setting the AVC can be installed over most of the terminal unit valve in the market.

Technical specification

Power supply

Power consumption
Signal input
Force
Action
Max stroke
Actuator speed
Connection
Cable
Maintenance
Status indications
Protection degree
Working range RH
Working range ${ }^{\circ} \mathrm{C}$
Storage temperature
Standards

230 V AC or $24 \mathrm{~V} \mathrm{AC/DC}, 50-60 \mathrm{~Hz}$
1,5 W for 24 V AC/DC, 2,2 W for 230 V AC
0 (2)... $10 \mathrm{~V} / 0$ (4)... 20 mA selectable via dip-switches
$120 \mathrm{~N}+30 \%-20 \%$
floating and proportional
6,3 mm
$8 \mathrm{sec} / \mathrm{mm}$
Metal ring M30 1.5
$1,5 \mathrm{~m}$ cable lenght $3 \times 0,35 \mathrm{~mm}^{2}$
Free
Internal LED
IP43
non-condensing
$0 . .+50^{\circ} \mathrm{C}$
$-20 \ldots+65^{\circ} \mathrm{C}$
CE-conformity, RoHS

Models	Power supply	Action
AVC230	230 V AC	floating
AVC24	24 V AC	floating
AVC24M	24 V AC/DC	proportional

LED indicator

Electrical wiring

Settings for proportional version

DIP Switch 1, 2, 3, and 6: DIP switch 1, 2, and 3 allow the user to change the analog input ranges. To change from voltage analog input to current analog input set DIP switch 6 accordingly.
DIP Switch 4: DIP switch 4 allows the user to change the action of the actuator in relation to the analog input. DIP switch 4 is off (DA) when the signal increases and the actuator stem extends. DIP Switch 5: DIP switch 5 allows the user to change the control characteristic of the actuator in order to obtain a combination of valve and actuator Linear or Almost Equal Percentage.
DIP Switch 5 OFF (Linear): When DIP switch 5 is set to Off, we recommend you use the valve with the linear or equal percentage control characteristic.
DIP Switch 5 ON (Almost Equal Percentage): When DIP switch 5 is set to On, we recommend you use the valve with the quick opening or on/off control characteristic.

Dimensions (mm)

Description

The valve serie VZ coupled to the actuator serie SVZ is suitable for applications in heating, cooling and air conditioning systems of domestic and commercial areas and is typically used on fan coil and air handling units. The actuator can be mounted after valve body has been installed onto the system.

Technical specifications valve VZ

Medium
Fluid temperature
Nominal pressure
Stroke
Leakage
Connection type
Installation position
Maintenance
Valve body
Valve stem
Sealing
Dimensions and weights

Hot and chilled water, water with up to 50% glycol
$+2 \ldots+94^{\circ} \mathrm{C}$
16 bar
3,5 mm
$<0,02 \%$ of KVs
Female thread
See drawing
Free
Forged brass
Stainless steel 302
NBR
See schedule

Models	Thread	Ways	KVs	Max. differential pressure (bar)
VZ215	G $1 / 2$	2	2,5	2,5
VZ220	G $3 / 4$	2	3,5	1,0
VZ225	G 1	2	4,0	0,6
VZ315	G $1 / 2$	3	2,5	2,5
VZ320	G 3/4	3	3,5	1,0
VZ325	G 1	3	4,0	0,6

Technical specifications actuator SVZ

Power supply
Power consumption
Control signal
Running time
Materials
Protection degree
Protection class
Working range ${ }^{\circ} \mathrm{C}$
Working range RH
Standards

230 V AC, 24 V AC $50-60 \mathrm{~Hz}$
7 W
On/Off, 2 points, spring return
Opening $\leq 10 \mathrm{~s}$, closing $\leq 5 \mathrm{~s}$
Aluminium base. Cover: ABS self-extinguishing
IP20
II
$0 . . .+60^{\circ} \mathrm{C}$
5 ... $95 \% \mathrm{RH}$, non-condensing
CE-conformity, RoHs

| Models | Power supply |
| :---: | :---: | Auxiliary switch

Electrical wirings

Installation

2-way valves normally closed: the flow direction is shown in the figure (the valve closes against the water flow, fig.1).

3-way diverting valves: inlet is the normally closed end and the normally open end is the by-pass port (the inlet part is unmarket, fig. 2 and 3)

Important notes for fan-coil installations

Valve motor and gear train will not operate properly when wet. Motor housing must be proteced from drip. The actuator with valve body do not need to be protected against condensation when installed horizontally or up to $85^{\circ} \mathrm{C}$ from upright potision (see figure on side). When mounted in vertical piping, motor housing must be protected from drip.

Dimensions (mm)

103

Description

The ball valves VS serie are control valves with perfect sealing, that thanks to the shaping of the adjustment disk guarantees a percentage flow characteristic.

Technical specifications

Valve type
BSP 2 way, 3 way mixing / diverting
Fluid Hot and cold water (with glycole max. 50\%) and $15 \%(103 \mathrm{kPa})$ saturated steam
Fluid temperature
Nominal pressure
Leakage
Control flow characteristics
Leakage
Max. closing pressure
Max. diff. pressure (close-off)
Maintenance
Valve
$-5 \ldots+120^{\circ} \mathrm{C}$ at an ambient temperature of $40^{\circ} \mathrm{C}$
PN20
$0,01 \%$ of KVs
Equal-percentage A-C, linear for port B bypass
Perfect sealing
13 bar
See table below
Free
Forged brass (from DN15 to DN50), cast iron (DN65 and DN80)
Stainless steel V2A
Stem Brass
Seat EPDM
Seal HNVR double O-ring
Standards CE-conformity, RoHS

2-way	Models	3-way	DN	KVs	Actuator type(*)	Actuator type	Actuator type with spring return(**)
VS215	VS315	15	4.0	S4..	S5..V	SR5..	
VS220	VS320	20	6.3	S4..	S5..V	SR5..	
VS225	VS325	25	10	S4..	S5..V	SR5..	
VS232	VS332	32	16	S8..	S5..V	SR10..	
VS240	VS340	40	25	S8..	S10..V	SR10..	
VS250	VS350	50	40	S16..	S10..V	SR15..	
VS250B	VS350B	50	63	S16..	S10..V	SR15..	
VS265	-	65	63	S16..		SR15..	
VS280	-	80	100	S16..		SR15..	
VS2100	-	100	120	S32..		-	

(*) For coupling valve and actuator adapter VSA is required
${ }^{(* *)}$ For coupling valve and spring return actuator adapter VSAR is required

Maximum close-off pressure [kPa] with actuator

Model	torque (Nm)	DN15	DN20	DN25	DN32	DN40	DN50
S5..	5	1000	1000	1000	1000	690	400
S10..	10	1400	1400	1400	1400	1000	1000

Control flow characteristics

A-C equal-percentage way
B-C bypass lineare way
3 -way used as mixing inlet in A and B, outlet C
3-way used as diverting inlet in C , outlet from A and B

C way	constant flow
A way	variable flow
B (bypass) way	variable flow

Installation

Mixing application:
Fluid enters through two inlets ($A \& B$) and exits through one outlet (C).

Diverting application:
Fluid enters through one inlet
(C) and exits through two outlets (A \& C).

Dimensions with actuator S4...S32 (mm)

DN mm	G	L	H	SW	D	Flange	Weight 2 way (kg)	Weight 3 way (kg)
15	G 1/2	60	179,20	26	-	-	0,2	0,25
20	G 3/4	67	187,80	32	-	-	0,35	0,4
25	G 1"	89	193,80	39	-	-	0,55	0,7
32	G 1" 1/4	99	204	48	-	-	0,85	1,1
40	G 1" 1/2	106	212,80	56	-	-	1,2	1,4
50	G 2"	128	224,70	70	-	-	1,95	2,2
65	Flange 145	97	136	-	105	4-18	4,5	-
80	Flange 160	108	140	-	125	8-18	6,8	-
100	Flange 180	120	202	-	125	8-18	8,6	-

Dimensions with actuator S5..V and S..10V (mm)

DN mm	G	L	H	SW	P	Weight $\mathbf{2} \mathbf{w a y}(\mathbf{k g})$	Weight $\mathbf{3} \mathbf{w a y}(\mathbf{k g})$
15	G 1/2	60	137	26	31	0,2	0,25
20	G 3/4	67	142	32	32	0,35	0,4
25	G 1"	89	148	39	46	0,55	0,7
32	G 1" 1/4	99	159	48	49	0,85	1,1
40	G 1" 1/2	106	181,60	56	52	1,2	1,4
50	G 2"	128	192.70	70	69	1,95	2,2
65	Flange 145	97	136	-		4,5	-
80	Flange 160	108	140	-		6,8	-
100	Flange 180	120	202	-		8,6	-

Description

The electric actuator series S5..V for ball valves are used in heating, refrigeration and air conditioning systems.
For valves from DN15 to DN32

- Power supply 24 VAC / DC and 230 VAC
- Function: open / closed or 3 point and proportional action
- Shaft dimension $\square 9 \mathrm{~mm}$ square (fixed)
- Direction of rotation selectable by switch

Actuator with 1 m connection cable
Optional 1 adjustable SPDT auxiliary switch

Technical specifications

Models		S5AV	S5BV	S5AMV
Nominal torque	Nm		5	
Power supply	V	24 AC/DC $\pm 10 \%$	230 AC	$24 \mathrm{AC} / \mathrm{DC} \pm 10 \%$
Frequency	Hz		50/60	
Power consumption				
- in operation	W		4.0	
- end position	W		2.0	
Rated power	VA		14	
Running time	s		60... 80	
Electrical connection		1 mPVC cable		
Auxiliary switch rating		3 (1.5) A / 250 VAC		
Sound power level	max. db (A)	40		
Control signal (input)		2-3 point	2-3 point	$0(2) \ldots 10 \mathrm{VDC}$
Position signal (output)				0... 10 VDC
Life Cycle	rotations		60.000	
Angle of rotation		$90^{\circ}\left(95^{\circ}\right.$ mechanical limitation)		
Direction of rotation		CW / CCW		
Protection class		III	11	III
Protection degree		IP54		
Working range ${ }^{\circ} \mathrm{C}$		$-20 \ldots+50^{\circ} \mathrm{C}$		
Working range RH		5...95\% RH, non-condensing		
Storage temperature		$-30 \ldots+60^{\circ} \mathrm{C}$		
Maintenance		free		
Weight	g	800		
Standards		CE-conformity, RoHs		
Option		suffix S for models with 1 SPDT auxiliary switch		

Electrical wirings

Wiring diagram S5AV / S5BV

Connect via safety isolating transformer!

Wiring diagram S5AMV

Wiring diagram S5AV / S5BV
Auxiliary switch

Yellow Green Blue

3 (1.5) A / 250 VAC Actuator at 0° position

Wiring diagram S5AV / S5BV
Parallel connection

Parallel connection of maximum 5 S5..V (S1) actuators is possible. Power consumption must be observed!

Wiring diagram S5AMV
Parallel connection

During parallel operation, the output signal (terminal 6, 0... 10 VDC) of the master actuator must be connected to terminal 5 of the next slave actuator.

Installation

Control flow characteristics

A-C equal-percentage way
B-C bypass lineare way
3 -way used as mixing inlet in A and B, outlet C
3-way used as diverting inlet in C , outlet from A and B

C way
 constant flow
 A way variable flow
 B (bypass) way variable flow

Dimensions (mm)

DN $\mathbf{m m}$	G	L	H	SW	P	weight $\mathbf{2} \mathbf{w a y}(\mathbf{k g})$	weight $\mathbf{3} \mathbf{w a y}(\mathbf{k g})$
15	G 1/2	60	137	26	31	0,2	0,25
20	G 3/4	67	142	32	32	0,35	0,4
25	G 1"	89	148	39	46	0,55	0,7
32	G 1" $1 / 4$	99	159	48	49	0,85	1,1

Description

The electric actuator series S10..V for ball valves are used in heating, refrigeration and air conditioning systems.
For valves from DN40 to DN50
Power supply 24 VAC / DC and 230 VAC

- Function: open / closed or 3 point and proportional action

Shaft dimension $\square 9 \mathrm{~mm}$ square (fixed)
Direction of rotation selectable by switch
Actuator with 1 m connection cable
Optional 1 adjustable SPDT auxiliary switch

Technical specifications

S10..V

Electrical wirings

Wiring diagram S10AV / S10BV

Connect via safety isolating transformer!

Wiring diagram S10AMV

Wiring diagram S10AV / S10BV Auxiliary switch

Yellow Green Blue

3 (1.5) A / 250 VAC Actuator at 0° position

Wiring diagram S10AV / S10BV
Parallel connection

Parallel connection of maximum 5 S10..V (S1) actuators is possible. Power consumption must be observed!

Wiring diagram S10AMV Parallel connection

During parallel operation, the output signal (terminal 6, 0... 10 VDC) of the master actuator must be connected to terminal 5 of the next slave actuator.

Installation

Change of rotation direction

Factory setting: clockwise (CW). Direction of rotation can be changed by toggling between CW/CCW switch on the actuator housing.

Control flow characteristics

A-C equal-percentage way
B-C bypass lineare way
3-way used as mixing inlet in A and B, outlet C
3-way used as diverting inlet in C, outlet from A and B

C way	constant flow
A way	variable flow
B (bypass) way	variable flow

Dimensions (mm)

DN $\mathbf{m m}$	G	L	H	SW	P	weight 2 way (kg)	weight 3 way (kg)
40	G 1" $1 / 2$	106	181,60	56	52	1,2	1,4
50	G 2"	128	192.70	70	69	1,95	2,2
65	Flange 145	97	136	-		4,5	-
80	Flange 160	108	140	-		6,8	-
100	Flange 180	120	202	-		8,6	-

Description

The globe valves in brass serie VG are used in heating, refrigeration and air-conditioning systems for the flow control of heated or chilled water for domestic and industrial applications. The valves are motorized by the electric actuators serie AVG at 600 and 1000 N .

Technical specifications

Fluids type
Fluid temperature
Nominal pressure
Control flow characteristics
Rangeability
Leakage
Connections
Stroke
Installation position
Maintenance
Body
Plug
Valve stem
Stem packing
Dimensions and weight

Hot and cold water (with glycol max. 50\%)
$-10 . . .100^{\circ} \mathrm{C}$
1600 kPa max (16 bar)
Equal-percentage (linear on angle way)
50 : 1
< 0,05\% of KVs
BSP female thread
See schedule
Horizontal or vertical
Free
Brass
Ottone
Stainless steel 302
PTFE
See schedule

2 ways	3 ways	DN	KVs	Max differential pressure (bar) ${ }^{(*)}$	Stroke	Actuator
VG215	VG315	15	4.0	2.5 (6)	15	AVG6(M)
VG220	VG320	20	6.3	2.5 (6)	15	AVG6(M)
VG225	VG325	25	8	2.5 (6)	20	AVG6(M)
VG232	VG332	32	16	2.5 (5.5)	20	AVG6(M)
VG240	VG340	40	25	2.5 (4.5)	20	AVG6(M)
VG250	VG350	50	40	2 (3)	20	AVG10(M)
VG265	VG365	65	63	2 (2.5)	20	AVG10(M)
VG280	VG380	80	78	2 (2)	20	AVG10(M)

$\left(^{*}\right)$ The values in the brackets are the max. dfferential pressure when valve is fully closed and actuator is still able to open or close the valve with security. In order to avoid wear between plug and seat, we recommend not to overcome the nominal values.

Caution

Before valves are mounted, make sure that pipes are clean, free from welding slags, that are perfectly lined up with valve body and not subjected to vibrations. The valve can be mounted in any position except upside-down. While assembling, respect the flow directions indicated by the arrows located on the valve body.
In the 2-way valve, when stem is up, the direct way is open, with stem down direct way is closed. In the 3-way valve, when stem is up, the direct way is closed, with stem down direct way is open.

Installation

Control flow characteristics

A-AB equal-percentage way
B-AB bypass lineare way
3-way used as mixing inlet in A and B, outlet AB
3-way used as diverting inlet in $A B$, outlet from A and B

AB way	constant flow
A way	variable flow
B (bypass) way	variable flow

Dimensions and weights

Models	Thread	A	Bimensions (mm)	Weight	
VG215	G1/2	84	38	130	2.2
VG315	G1/2	84	48	130	2.4
VG220	G3/4	84	38	130	2.3
VG320	G3/4	84	48	130	2.5
VG225	G1	104	48,5	135.5	3.5
VG325	G1	104	57,5	135.5	3.8
VG232	G1 1/4	110	50	138	3.7
VG332	G1 1/4	110	62,5	138	4.2
VG240	G1 1/2	120	55	144.5	4.4
VG340	G1 1/2	120	65,5	144.5	5.0
VG250	G2	134	58,5	143.5	5.7
VG350	G2	134	72,5	143.5	6.7
VG265	G2 1/2	160	72,5	152.5	8.5
VG365	G2 1/2	160	90	152.5	9.5
VG280	G3	180	80	158.5	9.5
VG380	G3	180	98,5	158.5	10.5

Description

The actuator series AVG6 has been designed to control the screwed globe valves series VG up to DN40. The actuator is equipped by a bidirectional synchronous motor at 600 N and available in ON-OFF, floating and proportional version. Fast and easy assembly. The actuator is equipped, for the proportional version, with a button for self-adjustment. The on-off switch is fitted with magnetic clutch.

Technical specifications

Power supply	See schedule
Electrical connection	Screw terminal
Torque	600 N
Max. stroke	20 mm
Running time	See schedule
Materials	ABS cover, self-extinguishing
Protection degree	IP54
Protection class	II
Working range ${ }^{\circ} \mathrm{C}$	$-10 \ldots+50^{\circ} \mathrm{C}$
Storage temperature and humidity	$-40 \ldots+50^{\circ} \mathrm{C}, 1 \ldots 95 \% \mathrm{RH}$, non-condensing
Fluid temperature	$<150^{\circ} \mathrm{C}$
Maintenance	Free

Models	Supply	Action	Consumption	Running time
AVG6	$24 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$	on-off, floating	$5,5 \mathrm{VA}$	70 sec. w/stroke 15 mm 92 sec. w/stroke 20 mm
AVG6B	$230 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$	on-off, floating	$5,5 \mathrm{VA}$	70 sec. w/stroke 15 mm 92 sec. w/stroke 20 mm
AVG6M	$24 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$	proportional	$5,5 \mathrm{VA}$	70 sec. w/stroke 15 mm 92 sec. w/stroke 20 mm

Electrical wiring

AVG6M (proportional)
W1: mA/VDC. Allows to choose whether the input signal is in voltage or in current. This jumper must be set along with W 2 to select the input signal to J 1 .
W2: $4 \ldots 20 \mathrm{~mA}(2 \ldots 10 \mathrm{VDC}) / 0 \ldots 20 \mathrm{~mA}(0 \ldots 10 \mathrm{VDC})$. This jumper must be set with W 1 to select the input signal to J 1.
W3: Reverse operation. Moving the jumper inverts the logic of operation compared to the input signal.

J1 Socket function

~24 V COM: 24 VAC power input
IN COM: Analog input signal, $0(2) \sim 10 \mathrm{~V}$ or $0(4) \sim 20 \mathrm{~mA}$. W 1 and W 2 should be selected accordingly
FB COM: Analog feedback signal, $0(2) \sim 10 \mathrm{~V}$ (load impedance $>500 \Omega$) or $0(4) \sim 20 \mathrm{~mA}$ (load impedance $\leq 500 \Omega$), voltage and current automatically switch.

AVG6, AVG6B (on-off, floating)

1: Common
2: Stem down (direct way open)
3: Stem up (direct way close)

Installation

Place motor on the valve and, having placed in seat, tighten the locking screw (1).
Screw the brass nut of the motor shaft on the valve stem (2) and tighten the counter nut (3).
Make the electrical connections as shown in the previous diagrams and (only for AVG6M) provide for the jumper settings.

LED status indicator AVG6M

LED status	Equipment status
Flash slowly (1 sec on, 1 sec off $)$.	Normal operating
Flash quickly $(0,25$ sec on, 0,25 sec off $)$	Self-adjustment
Flash twice $(0,25$ sec on and off twice, $1,25 \mathrm{sec}$ off $)$	Self-adjustment failure
Flash once quickly $(0,25$ sec on and off, $1,75 \mathrm{sec}$ off $)$	Motor timeout alarm

Motor rotation indication

D50 light on, valve sharft upward
D60 light on, valve sharft downward
Self-adjustment in an error state: flash twice quickly and off for a long time ($0,25 \mathrm{sec}$ on, 0,25 sec off, twice, then 1,25 sec off)

Self-adjustment

Note:

1. Do not start adaptation at the top of the valve stem. When adaptive, the voltage value of the simulated feedback signal 0-10VDC corresponds to the actual position value of the valve stem.
2. The adaptive process is best carried out when the valve is unloaded or lightly loaded. If the motor timeout alarm is triggered due to high resistance during adaptation, the adaptation will fail or incorrect valve travel will be obtained.
Press and hold the "AUTO SET" key for 3 sec , the actuator automatically will enter the self-adjustment. The LED "work" is flashing rapidly (0,25 sec on, $0,25 \mathrm{sec}$ off). The valve shaft moves down to the bottom, and then maintains the position for 25 sec and then move upward until the upper point. Theself-adjustment does not end until the valve shaft does not hold the final position for 25 sec .

Note: If the analog feedback signal does not meet the requirements during adaptive (that is, the potentiometer slips when the valve stem goes to both ends), the position of the potentiometer needs to be adjusted and then re-adaptive. Otherwise, although adaptive may be successful, the two ends of the drive will not go in place and cause the valve to close loosely.

To self-adaptation occurred (the previous data is overwritten), the actuator returns to normal operation. Otherwise (the previous data is not overwritten), will be reported the failure of the state of self-adjustment ($0,25 \mathrm{sec}$ on, $0,25 \mathrm{sec}$ off, twice, then $1,25 \mathrm{sec}$ off. You can hold down the "AUTO SET" key for 3 sec to retry the process of self-adjustment, or reboot (power cycle) of the actuator to return to normal working state.

Reasons for self-adjustment failure:

1. The adaptive valve stem stroke is too short, shorter than half of the maximum stroke.
2. The potentiometer wire connection is wrong or the line is disconnected. It is correct that the potentiometer value is maximum at the top of the valve stem and minimum at the bottom.

Dimensions (mm)

Description

The actuator series AVG10 has been designed to control the screwed globe valves series VG from DN50 up to DN80. The actuator is equipped by a bidirectional synchronous motor at 1000 N and available in ON-OFF, floating and proportional version. Fast and easy assembly. The actuator is fitted with manual override for the drive in case of power failure.

Technical specifications

Power supply	See schedule
Electrical connection	Screw terminal
Torque	1000 N
Max. stroke	20 mm
Running time	see schedule
Materials	ABS cover, self-extinguishing
Protection degree	IP54
Protection class	II
Working range ${ }^{\circ} \mathrm{C}$	$-10 \ldots+50^{\circ} \mathrm{C}$
Storage temperature and humidity	$-40 \ldots+50^{\circ} \mathrm{C}, 1 \ldots 95 \% \mathrm{RH}$, non-condensing
Fluid temperature	$<150^{\circ} \mathrm{C}$
Maintenance	Free

Models	Supply	Action	Consumption	Running time
AVG10	$24 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz}$	on-off, floating	12 VA	105 sec.
AVG10B	$230 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz}$	on-off, floating	12 VA	105 sec.
AVG10M	$24 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz}$	proportional	12 VA	105 sec.

Electrical wiring

AVG10M (proportional)

Terminal J1:
02: When short-circuiting with T2 (o-), then the stem goes completely up (direct way close).
The position of W3 has no effect.
01: When short-circuiting with T2 (o-), then the stem goes completely down (direct way open). The position of W3 has no effect.
T1 T2: input terminal at $24 \vee \mathrm{AC}$. T 2 is common terminal (T 2 is connected with -).

- +: Input signal 4... $20 \mathrm{~mA}(2 \ldots 10 \mathrm{VDC}) / 0 \ldots 20 \mathrm{~mA}(0 \ldots 10 \mathrm{VDC})$. W2 and W4 must be set according to the input signal.

F: Feedback signal. There is a signal $0 \ldots 10 \mathrm{~V}$ DC or $2 \ldots 10 \mathrm{~V}$ DC depending on the setting of W2.

AVG10 (on-off, floating)

5: Common
4: Stem down (direct way open)
3: Feedback with stem down (24 V AC Ver.)
2: Stem up (direct way close)
1: Feedback with stem up (24 V AC Ver.)

AVG10B (on-off, floating)

1: Common
2: Stem down (direct way open)
3: Stem up (direct way close)

AVG10

Installation

Place motor on the valve and, having placed in seat, tighten the locking screw (1).
Push the steel plate (2) and raise the valve stem or, alternatively, drive down the actuator shaft by manual override (3).
Make the electrical connections as shown in the previous diagrams and (only for AVG10M) provide for the jumper settings.

Setting (AVG10M)

W1: $0 \%, 50 \%, 100 \%$. Set the position of valve stroke in case of misfunction or failure of input signal.

0% stem completely up 50% stem at halfway 100% stem completely down

Moving the jumper W3, the situation is reversed.
$\mathbf{0 \%}$ stem completely down 50\% stem at halfway
100% stem completely up
W2: $4 \ldots 20 \mathrm{~mA}(2 \ldots 10 \mathrm{~V}$ DC) / $0 \ldots 20 \mathrm{~mA}(0 \ldots 10 \mathrm{~V} \mathrm{DC})$. This jumper must be set according to W 4 to select the input signal to J 1.$$

W3: Reverse operation. Moving the jumper inverts the logic of operation as compared to the input signal.
W4: mA / V DC. This jumper must be set along with W2 to select the input signal to J1.
LED Status Indicator (work): Normal operating status: flashing slowly (1 sec on, one sec off). During the self-adaptation of the actuator on the valve (after pressing S1 for at least 3 sec) flashes rapidly (0.25 sec on, 0.25 sec off).
Self-adjustment in an error state: blinks twice quickly and off for a long time (on 0.25 sec , off for 0.25 sec , twice, then off by 1.25 sec).
LED indication of the rotation direction of the motor:
When the LED D60 lights up, the valve rod moves downward. When the valve rod reaches the bottom and hold the position for 25 seconds, the LED turns off.
When the LED D50 lights up, the valve rod moves upward. When the valve rod reaches the top and hold the position for 25 seconds, the LED turns off.
Self-adjustment of the actuator to the valve. Each actuator must be adapted to the valve to which it is coupled.
Press and hold the " $\mathbf{S 1}$ " key for 3 sec , the actuator automatically will enter the self-adjustment. The LED "work" is flashing rapidly (on 0.25 sec., off 0.25 sec.). The valve shaft moves down to the bottom, and then maintains the position for 25 sec and then move upward until the upper point. The self-adjustment does not end until the valve shaft does not hold the final position for 25 sec .
To self-adaptation occurred (the previous data is overwritten), the actuator returns to normal operation. Otherwise (the previous data is not overwritten), will be reported the failure of the state of self-adjustment (on 0.25 sec ., off 0.25 sec ., twice, then off by 1.25 sec .). You can hold down the " S 1 " key for 3 sec to retry the process of self-adjustment, or reboot (power cycle) of the actuator to return to normal working state.
Possible problems of self-adjustment:
1: It occurs in the case where the stroke is reached less than half the nominal stroke.
2: The connection of the potentiometer is wrong (terminal J2). Correct way: when the valve shaft is downward the potentiometer has the maximum value, when the valve shaft is upward the potentiometer has the minimum value.

Printed circuit board (AVG10M)

Dimensions (mm)

Description

The globe valves in cast-iron serie VF are used in heating, refrigeration and air-conditioning systems for the flow control of heated or chilled water for domestic and industrial applications. The valves are motorized by the electric actuators serie AVF.

Technical specifications

Fluids type
Fluid temperature
Nominal pressure
Control flow characteristics
Rangeability
Leakage
Connections
Stroke
Installation position
Maintenance
Body
Plug
Valve stem
Stem packing
Dimensions and weight

Hot and cold water (with glycol max. 50\%)
$-10 . . .120^{\circ} \mathrm{C}$
1600 kPa max (16 bar)
Equal-percentage on direct way Linear on angle way
50:1
< $0,1 \%$ of KVs
Flange according EN1092-2
See schedule
Horizontal or vertical
Free
Cast-iron G25
Brass
Stainless steel 302
PTFE
See schedule

2 ways	3 ways	DN	KVs	Max differential pressure (bar) ${ }^{(*)}$	Stroke	Actuator
VF250	VF350	50	50	2,5 (6)	20	AVF12(M)
VF265	VF365	65	75	2,0 (6)	20	AVF12(M)
VF280	VF380	80	100	1,5 (6)	20	AVF12(M)
VF2100	VF3100	100	125	1,5 (6)	38	AVF18(M)
VF2125	VF3125	125	200	2 (5)	38	AVF30(M)
VF2150	VF3150	150	285	2,0 (5)	38	AVF70(M)
VF2200	VF3200	200	400	1,5 (4)	38	AVF70(M)

${ }^{*}$) The values in the brackets are the max. dfferential pressure when valve is fully closed and actuator is still able to open or close the valve with security. In order to avoid wear between plug and seat, we recommend not to overcome the nominal values.

Caution

Before valves are mounted, make sure that pipes are clean, free from welding slags, that are perfectly lined up with valve body and not subjected to vibrations. The valve can be mounted in any position except upside-down. While assembling, respect the flow directions indicated by the arrows located on the valve body.
When stem is up, the direct way is closed, with stem down direct way is open.

Installation

Diverting 3-way-valve

Mixing 3-way-valve

2-way-valve

Control flow characteristics

A-AB equal-percentage way
$B-A B$ bypass lineare way
3 -way used as mixing inlet in A and B, outlet AB
3 -way used as diverting inlet in $A B$,
outlet from A and B
AB way constant flow
A way variable flow
B (bypass) way variable flow

Dimensions and weights

Description

The actuator series AVF has been designed to control the flanged globe valves serie VF. The actuator is equipped by a double bidirectional synchronous motor at 1200 and 1800 N and available in ON-OFF, floating and proportional version. Fast and easy assembly. The actuator is fitted with manual override for the drive in case of power failure.

Technical specifications

Power supply
Electrical connection
Torque
Max. stroke
Running time
Materials

Protection degree
Protection class
Working range ${ }^{\circ} \mathrm{C}$
Storage temperature and humidity
Fluid temperature
Maintenance

24 V AC $50 / 60 \mathrm{~Hz}, 12 \mathrm{VA}$
Screw terminal
See schedule
See schedule
See schedule
ABS cover, self-extinguishing Aluminium bracket
IP54
II
$-10 \ldots+50^{\circ} \mathrm{C}$
$-40 \ldots+50^{\circ} \mathrm{C}, 1 \ldots 95 \% \mathrm{RH}$, non-condensing
$<150^{\circ} \mathrm{C}$
Free

Models	Torque \mathbf{N}	Action	Stroke mm	20
AVF12	1200	on-off, floating	Running time	
AVF12M	1200	proportional	20	114 sec. with 50 Hz 95 sec: with 60 Hz
AVF18	1800	on-off, floating	40	114 sec. with 50 Hz 95 sec: with 60 Hz
AVF18M	1800	proportional	40	210 sec. with 50 Hz 175 sec: with 60 Hz
			210 sec. with 50 Hz	

Electrical wiring

AVF..M (proportional)

Terminal J1:
02: When short-circuiting with T2 (o-), then the stem goes completely up (direct way close).
The position of W3 has no effect.
01: When short-circuiting with T2 ($0-$), then the stem goes completely down (direct way open). The position of W3 has no effect.
T1 T2: input terminal at 24 VAC . T2 is common terminal (T2 is connected with -).

- +: Input signal $4 \ldots 20 \mathrm{~mA}(2 \ldots 10 \mathrm{~V}$ DC) / $0 \ldots 20 \mathrm{~mA}(0 \ldots 10 \mathrm{~V} \mathrm{DC}) . \mathrm{W} 2$ and W 4 must be set according to the input signal.

F: Feedback signal. There is a signal $0 \ldots 10 \mathrm{~V}$ DC or $2 \ldots 10 \mathrm{~V}$ DC depending on the setting of W 2 .

AVF.. (on-off, floating)
1: 24 V AC Stem down (direct way open)
4: Feedback with stem down (24 V AC)
5: 24 VAC (common)
6: 24 V AC Stem up (direct way close)
7: Feedback with stem up (24 V AC)

Installation

Place motor on the valve and, having placed in seat, tighten the 4 locking screw (1).
Push the steel plate (2) and raise the valve stem or, alternatively, drive down the actuator shaft by manual override (3).
Make the electrical connections as shown in the previous diagrams and (only for AVF..M) provide for the jumper settings. (3).

Setting (AVF..M)

W1: $0 \%, 50 \%, 100 \%$. Set the position of valve stroke in case of misfunction or failure of input signal.
0% stem completely up $\quad 50 \%$ stem at halfway
Moving the jumper W3, the situation is reversed.
0% stem completely down $\quad 50 \%$ stem at halfway stem completely down

W2: $4 \ldots 20 \mathrm{~mA}(2 \ldots 10 \mathrm{~V} \mathrm{DC}) / 0 \ldots 20 \mathrm{~mA}(0 \ldots 10 \mathrm{~V} \mathrm{DC})$. This jumper must be set according to W 4 to select the input signal to J 1 .
W3: Reverse operation. Moving the jumper inverts the logic of operation as compared to the input signal.
W4: mA / V DC. This jumper must be set according to W2 to select the input signal to J1.
LED Status Indicator (work): Normal operating status: flashing slowly (1 sec on, one sec off). During the self-adaptation of the actuator on the valve (after pressing S 1 for at least 3 sec) flashes rapidly (0.25 sec on, 0.25 sec off).
Self-adjustment in an error state: blinks twice quickly and off for a long time (on 0.25 sec , off for 0.25 sec , twice, then off by 1.25 sec).
LED indication of the rotation direction of the motor:
When the LED D60 lights up, the valve rod moves downward. When the valve rod reaches the bottom and hold the position for 25 seconds, the LED turns off.
When the LED D50 lights up, the valve rod moves upward. When the valve rod reaches the top and hold the position for 25 seconds, the LED turns off.
Self-adjustment of the actuator to the valve. Each actuator must be adapted to the valve to which it is coupled.

Press and hold the " $\mathbf{S 1}$ " key for 3 sec , the actuator automatically will enter the self-adjustment. The LED "work" is flashing rapidly (on 0.25 sec ., off 0.25 sec .). The valve shaft moves down to the bottom, and then maintains the position for 25 sec and then move upward until the upper point. The self-adjustment does not end until the valve shaft does not hold the final position for 25 sec .
To self-adaptation occurred (the previous data is overwritten), the actuator returns to normal operation. Otherwise (the previous data is not overwritten), will be reported the failure of the state of self-adjustment (on 0.25 sec ., off 0.25 sec ., twice, then off by 1.25 sec .). You can hold down the " S 1 " key for 3 sec to retry the process of self-adjustment, or reboot (power cycle) of the actuator to return to normal working state.
Possible errors of self-adjustment:
1: It occurs in the case where the stroke is reached less than half the nominal stroke.
2: The connection of the potentiometer is wrong (terminal J2). Correct way: when the valve shaft is downward the potentiometer has the maximum value, when the valve shaft is upward the potentiometer has the minimum value.

Dimensions (mm)

Description

The actuator series AVF30 has been designed to control the flanged globe valves serie VF, size DN125. The actuator is equipped by a double bidirectional synchronous motor at 3000 N and available in ON-OFF, floating and proportional version.
Fast and easy assembly. The actuator is fitted with manual override for the drive in case of power failure.

Technical specifications

Power supply
Electrical connection
Torque
Max. stroke
Running time
Materials

Protection degree
Protection class
Working range ${ }^{\circ} \mathrm{C}$
Storage temperature and humidity
Fluid temperature
Maintenance
$24 \mathrm{~V} \mathrm{AC} \pm 10 \%, 50 / 60 \mathrm{~Hz}, 12 \mathrm{VA}$
Screw terminal
3000 N
40 mm
See schedule
ABS cover, self-extinguishing Aluminium bracket

IP54
II
$-10 \ldots+50^{\circ} \mathrm{C}$
$-40 \ldots+50^{\circ} \mathrm{C}, 1 \ldots 95 \% \mathrm{RH}$, non-condensing

$<150^{\circ} \mathrm{C}$
Free

Models	Action	Stroke $\mathbf{m m}$	Running time
AVF30	on-off, floating	40	105 sec. with 50 Hz $90 \mathrm{sec}:$ with 60 Hz
AVF30M	proportional		

Electrical wiring

AVF30M (proportional)

Terminal J1:
02: When short-circuiting with T2 (0-), then the stem goes completely up (direct way close).
The position of W3 has no effect.
01: When short-circuiting with T2 (o-), then the stem goes completely down (direct way open). The position of W3 has no effect.
T1 T2: input terminal at 24 VAC . T 2 is common terminal (T 2 is connected with -).

- +: Input signal $4 \ldots 20 \mathrm{~mA}(2 \ldots 10 \mathrm{~V} D C) / 0 \ldots 20 \mathrm{~mA}(0 \ldots 10 \mathrm{~V} D C)$.

F: Feedback signal. There is a signal $0 . . .10 \mathrm{~V}$ DC or $2 \ldots 10 \mathrm{~V}$ DC

AVF30 (on-off, floating)

1: 24 V AC Stem down (direct way open)
4: Feedback with stem down (24 V AC)
5: 24 V AC (common)
6: 24 V AC Stem up (direct way close)

7: Feedback with stem up (24 V AC)

Dimensions (mm)

Installation

Set the actuator into neck of the body top.
Lock the two semi-rings into the groove above the stem top. Pull up the nut and connect it to the thread under the actuator.
Tighten the bolt up with 4 mm inside hexagonal wrench.
Note: tighten the right side bolt.
Ensure the stem is fastened and the connection is finished.

Setting (AVF..M)

W1: $0 \%, 50 \%, 100 \%$. Set the position of valve stroke in case of misfunction or failure of input signal. The factory default setting is 50%.
0% stem completely up 50% stem at halfway 100% stem completely down

Moving the jumper W3, the situation is reversed.
0% stem completely down 50% stem at halfway 100% stem completely up
W2: $4 \ldots 20 \mathrm{~mA}(2 \ldots 10 \mathrm{~V}$ DC) / $0 \ldots 20 \mathrm{~mA}(0 \ldots 10 \mathrm{~V} \mathrm{DC})$. This jumper must be set according to W 4 to select the input signa to J1.
W3: Reverse operation. Moving the jumper inverts the logic of operation as compared to the input signal.
W4: mA / V DC. This jumper must be set according to W2 to select the input signal to J 1 .
LED Status Indicator (work): Normal operating status: flashing slowly (1 sec on, one sec off). During the self-adaptation of the actuator on the valve (after pressing S 1 for at least 3 sec) flashes rapidly (0.25 sec on, 0.25 sec off).
Self-adjustment in an error state: blinks twice quickly and off for a long time (on 0.25 sec , off for 0.25 sec , twice, then off by 1.25 sec).
LED indication of the rotation direction of the motor:
When the LED D60 lights up, the valve rod moves downward. When the valve rod reaches the bottom and hold the position for 25 seconds, the LED turns off.
When the LED D50 lights up, the valve rod moves upward. When the valve rod reaches the top and hold the position for 25 seconds, the LED turns off.

Self-adjustment of the actuator to the valve. Each actuator must be adapted to the valve to which it is coupled.
Press and hold the " $\boldsymbol{S} 1$ " key for 3 sec , the actuator automatically will enter the self-adjustment. The LED "work" is flashing rapidly (on 0.25 sec., off 0.25 sec.). The valve shaft moves down to the bottom, and then maintains the position for 25 sec and then move upward until the upper point. The self-adjustment does not end until the valve shaft does not hold the final position for 25 sec .
To self-adaptation occurred (the previous data is overwritten), the actuator returns to normal operation. Otherwise (the previous data is not overwritten), will be reported the failure of the state of self-adjustment (on 0.25 sec ., off 0.25 sec ., twice, then off by 1.25 sec .). You can hold down the "S1" key for 3 sec to retry the process of self-adjustment, or reboot (power cycle) of the actuator to return to normal working state.
Possible errors of self-adjustment:
1: It occurs in the case where the stroke is reached less than half the nominal stroke.
2: The connection of the potentiometer is wrong (terminal J2). Correct way: when the valve shaft is downward the potentiometer has the maximum value, when the valve shaft is upward the potentiometer has the minimum value.

Description

The actuator series AVF70 has been designed to control the flanged globe valves serie VF, size DN150 and DN200. The actuator is equipped by a double bidirectional synchronous motor at 7000 N and available in ON-OFF, floating and proportional version. Fast and easy assembly. The actuator is fitted with manual override for the drive in case of power failure.

Technical specifications

Power supply
Electrical connection
Torque
Max. stroke
Running time
Materials

Protection degree	IP54
Protection class	II
Working range ${ }^{\circ} \mathrm{C}$	$-10 \ldots+50^{\circ} \mathrm{C}$
Storage temperature and humidity	$-40 \ldots+50^{\circ} \mathrm{C}, 1 \ldots 95 \% \mathrm{RH}$, non-condensing
Fluid temperature	$<150^{\circ} \mathrm{C}$
Maintenance	Free

Screw terminal
7000 N
38 mm
See schedule
ABS cover, self-extinguishing Aluminium bracket

IP54
II
$-10 \ldots+50^{\circ} \mathrm{C}$
$-40 \ldots+50^{\circ} \mathrm{C}, 1 \ldots 95 \% \mathrm{RH}$, non-condensing

Free

Models	Action	Stroke $\mathbf{m m}$	Running time
AVF70	on-off, floating	38	240 sec . with 50 Hz
AVF70M	proportional		175 sec : with 60 Hz

Electrical wiring

AVF70M (proportional)

Terminal J1:
02: When short-circuiting with T 2 ($0-$), then the stem goes completely up (direct way close).
The position of W 3 has no effect.
01: When short-circuiting with $\mathrm{T} 2(0-)$), then the stem goes completely down (direct way open). The position of W3 has no effect.
T1 T2: input terminal at 24 V AC . T 2 is common terminal (T 2 is connected with -).

- +: Input signal $4 \ldots 20 \mathrm{~mA}(2 \ldots 10 \mathrm{~V}$ DC) / $0 \ldots 20 \mathrm{~mA}(0 . . .10 \mathrm{~V}$ DC).

F: Feedback signal. There is a signal $0 \ldots . .10 \mathrm{~V}$ DC or $2 \ldots . .10 \mathrm{~V}$ DC
AVF70 (on-off, floating)
1: 24 V AC Stem down (direct way open)
4: Feedback with stem down (24 V AC)
5: $24 \mathrm{~V} \mathrm{AC} \mathrm{(common)}$
6: 24 V AC Stem up (direct way close)
7: Feedback with stem up (24 V AC)

Dimensions (mm)

Installation

Set the actuator into neck of the body top.
Lock the two semi-rings into the groove above the stem top. Pull up the nut and connect it to the thread under the actuator.
Tighten the bolt up with 4 mm inside hexagonal wrench.
Note: tighten the right side bolt.
Ensure the stem is fastened and the connection is finished.

Setting (AVF..M)

W1: $0 \%, 50 \%, 100 \%$. Set the position of valve stroke in case of misfunction or failure of input signal. The factory default setting is 50%.
0% stem completely up 50% stem at halfway 100% stem completely down
Moving the jumper W3, the situation is reversed.
0% stem completely down 50% stem at halfway 100% stem completely up
W2: $4 \ldots 20 \mathrm{~mA}(2 \ldots 10 \mathrm{~V} D) / 0 \ldots 20 \mathrm{~mA}(0 \ldots 10 \mathrm{~V} C)$. This jumper must be set according to W 4 to select the input signal to J1.
W3: Reverse operation. Moving the jumper inverts the logic of operation as compared to the input signal.
W4: mA / V DC. This jumper must be set according to W2 to select the input signal to J 1 .
LED Status Indicator (work): Normal operating status: flashing slowly (1 sec on, one sec off). During the self-adaptation of the actuator on the valve (after pressing S 1 for at least 3 sec) flashes rapidly (0.25 sec on, 0.25 sec off).
Self-adjustment in an error state: blinks twice quickly and off for a long time (on 0.25 sec , off for 0.25 sec , twice, then off by 1.25 sec).
LED indication of the rotation direction of the motor:
When the LED D60 lights up, the valve rod moves downward. When the valve rod reaches the bottom and hold the position for 25 seconds, the LED turns off.
When the LED D50 lights up, the valve rod moves upward. When the valve rod reaches the top and hold the position for 25 seconds, the LED turns off.

Self-adjustment of the actuator to the valve. Each actuator must be adapted to the valve to which it is coupled.
Press and hold the " $\boldsymbol{S} 1$ " key for 3 sec , the actuator automatically will enter the self-adjustment. The LED "work" is flashing rapidly (on 0.25 sec., off 0.25 sec.). The valve shaft moves down to the bottom, and then maintains the position for 25 sec and then move upward until the upper point. The self-adjustment does not end until the valve shaft does not hold the final position for 25 sec .
To self-adaptation occurred (the previous data is overwritten), the actuator returns to normal operation. Otherwise (the previous data is not overwritten), will be reported the failure of the state of self-adjustment (on 0.25 sec ., off 0.25 sec ., twice, then off by 1.25 sec .). You can hold down the " S 1 " key for 3 sec to retry the process of self-adjustment, or reboot (power cycle) of the actuator to return to normal working state.
Possible errors of self-adjustment:
1: It occurs in the case where the stroke is reached less than half the nominal stroke.
2: The connection of the potentiometer is wrong (terminal J 2). Correct way: when the valve shaft is downward the potentiometer has the maximum value, when the valve shaft is upward the potentiometer has the minimum value.

Description

The VM series of butterfly valves (Wafer) are used in heating, refrigeration and air-conditioning systems for the flow control of heated or chilled water for domestic and industrial applications. The valves can be coupled with our 24 or 230 VAC modulating or 2-3 points actuators with or without auxiliary switches.

Technical specifications

Fluid
Hot and cold water (with glycole max. 50\%)
Valve size
DN40 - DN150
Control flow characteristics Equal-percentage
Body Aluminium ADC12
Seat
EPDM
Shaft X30Cr13 (AISI 420)
Disk
Max working pressure
Nodular iron GJS500
PN10
Maintenance
free
Water temperature
Storage temperature
Standards
$-15 \ldots+90^{\circ} \mathrm{C}$
$+20 \ldots+80^{\circ} \mathrm{C}$, dry and dust-free, far from direct sunlight
CE-conformity, RoHS

Models	KVs	Max diff. pressure (bar)	Actuator type
VM 40	50	12	S16..
VM 50	126	10	S16..
VM 65	226	8	S16..
VM 80	390	8	S16..
VM 100	620	6	S16..
VM 125	860	6	S24..
VM 150	1710	4	S32..

Flow control characteristic

The flow characteristic of VM valves is equipercentage (see diagram).

Dimensions (mm)

DN	A	B	C	D	E
$\mathbf{4 0}$	151	217	83	284	33
$\mathbf{5 0}$	166	239	104	306	43
$\mathbf{6 5}$	172	258	121	325	46
$\mathbf{8 0}$	170	260	132	327	46
$\mathbf{1 0 0}$	187	295	154	362	52
$\mathbf{1 2 5}$	205	324	189	391	56
$\mathbf{1 5 0}$	217	349	218	416	56

Electrical wirings

 for models at $2 / 3$ pointsWiring diagram

Auxiliary switches

Auxiliary switch adjustment

Factory setting: switch a at 10°
switch b at 80°
The switching position can be changed manually.

Angle of rotation limiting

Adapter release

Diagram of pressure losses for liquids

Example for fluids with specific gravity $1 \mathrm{~kg} / \mathrm{dm}^{3}$ (water)
Flow: $7.5 \mathrm{~m}^{3} / \mathrm{h}$ water
Pressure drop: 55 kPa
Locate the crossing point between the line with starting point at flow value $7.5 \mathrm{~m}^{3} / \mathrm{h}$ and the line at pressure drop value 55 kPa . This point corresponds to flow coefficient KVs 10 , therefore control valve must have KVs $=10$.

Example for fluids with specific gravity different than $1 \mathrm{~kg} / \mathrm{dm}^{3}$
Flow: $30 \mathrm{~m}^{3} / \mathrm{h}$ fluid with specific gravity $0.9 \mathrm{~kg} / \mathrm{dm}^{3}$
Pressure drop: 20 kPa
Locate the crossing point (right side of diagram) between the line with starting point at specific gravity value $0.9 \mathrm{~kg} / \mathrm{dm}^{3}$ and the sloping line at flow value $30 \mathrm{~m}^{3} / \mathrm{h}$.
Locate the crossing point between the line with starting point at above crossing point and the line at pressure drop value 20 kPa . This point corresponds to flow coefficient KVs 63, therefore control valve must have size KVs = 63 (DN65).

0 .
 000

grayline

humidistats

Description

The room humidistat HR1 is controlling the relative humidity in domestic, commercial or industrial applications and can drive fans, humidifiers or dehumidifiers bringing the moisture level of the value set on his knob. The modern and elegant housing to complement any type of interior design.

Technical specifications

Sensible element
Wiring terminals
Electrical rating

Working range
Differential
Accuracy
Humidity calibration
Long term stability
Time constand in moving air ($0.2 \mathrm{~m} / \mathrm{s}$)
Working temperature
Storage temperature
Admissible ambient humidity
Materials
Protection type
Protection class
Standards

Stabilised synthetic textile tape Screw terminals for wires up to $1,5 \mathrm{~mm}^{2}$
max 5 (3) A, 250 VAC
$\min 100 \mathrm{~mA}, 24 \mathrm{VAC}$
30...90\% RH

6\% RH
$\pm 5 \% \mathrm{RH}^{*}$
$55 \% \mathrm{RH}$ at $23^{\circ} \mathrm{C}$
approx. $-1,5 \%$ RH/year
approx. 5 minutes
$0 . .50^{\circ} \mathrm{C}$
$-25 . . .70^{\circ} \mathrm{C}$ no condense
10... 95% RH no condense

Housing of flame-retardant thermoplastic
IP30
II
CE-conformity, RoHS
(*) The setting accuracy of the humidistat at the calibration point is $\pm 5 \% \mathrm{rh}$ at $55 \% \mathrm{rh}, 23^{\circ} \mathrm{C}$ after initial calibration at the factory. Setting accuracy see diagram "Setting accuracy". In general, humidity sensors (humidistats) are subject to increased ageing if they are used and/or stored in very contaminated air or aggressive gases. Under these conditions, the humidistat may drift prematurely and alter the linearity.

Operation

When the relative humidity rises and reaches the upper switching point, contacts 1-2 open and 1-3 close. The setpoint XS corresponds to the upper switching point. The contacts revert to their original position when the humidity has fallen below the upper switching point by the amount of the fixed switching difference (Δ) of $6 \% \mathrm{RH}$.

Electrical wirings

Installation

. DANGER

Electrical connection
Danger of electrocution! The removal of this cover exposes parts which carry mains voltage.

- The unit should be opened only by a qualified electrician or by the manufacturer's service personnel.
- Before starting any work on the electrical connections, separate the unit from the mains power supply.
- Do not apply power to the unit until it has been completely re-assembled and the housing has been closed.
- To prevent access by unqualified persons and, in particular, children, do not leave the opened unit unattended.

Var. 3

Dimensions (mm)

Description

The duct humidistat HD1 is controlling the relative humidity in pipes and air ducts, in commercial or industrial applications and can drive fans, humidifiers or dehumidifiers bringing the moisture level of the value set on his knob. It comes supplied with plastic bracket for wall mounting and gasket for mounting on air ducts.

Technical specifications

Sensible element	Stabilised synthetic textile tape, tempera-ture-compensated
Wiring terminals	Screw terminals for wires up to $1,5 \mathrm{~mm}^{2}$
Electrical rating	Max 5 (3) A, 250 VAC Min $100 \mathrm{~mA}, 24 \mathrm{~V}$
Setting range	15...95\% RH
Working range	30...90\% RH no condense
Differential	4\% RH (after umidity calibration)
Accuracy	$\pm 5 \%$ RH*
Humidity calibration	$55 \% \mathrm{RH}$ at $23^{\circ} \mathrm{C}$
Max. air speed	$10 \mathrm{~m} / \mathrm{sec}$.
Long term stability	approx. -1,5\% RH/year
Time constand in moving air ($0.2 \mathrm{~m} / \mathrm{s}$)	approx. 3 minutes
Working temperature	$0 . .70^{\circ} \mathrm{C}$
Storage temperature	$-20 . .70^{\circ} \mathrm{C}$ no condense
Admissible ambient humidity	10...95\% RH no condense
Materials	Housing of flame-retardant thermoplastic
Protection type	IP30
Protection class	11
Standards	CE-conformity, RoHS

(*) The setting accuracy of the humidistat at the calibration point is $\pm 5 \%$ rh at $55 \% \mathrm{rh}, 23^{\circ} \mathrm{C}$ after initial calibration at the factory. Setting accuracy see diagram "Setting accuracy". In general, humidity sensors (humidistats) are subject to increased ageing if they are used and/or stored in very contaminated air or aggressive gases. Under these conditions, the humidistat may drift prematurely and alter the linearity.

Operation

When the relative humidity rises and reaches the upper switching point, contacts 1-2 open and 1-3 close. The setpoint corresponds to the upper switching point. The contacts revert to their original position when the humidity has fallen below the upper switching point by the amount of the fixed switching difference (Δ) of $4 \% \mathrm{RH}$.

Electrical wirings

Installation

4. DANGER

Electrical connection
Danger of electrocution! The removal of this cover exposes parts which carry mains voltage.

- The unit should be opened only by a qualified electrician or by the manufacturer's service personnel.
- Before starting any work on the electrical connections, separate the unit from the mains power supply.
- Do not apply power to the unit until it has been completely re-assembled and the housing has been closed.
- To prevent access by unqualified persons and, in particular, children, do not leave the opened unit unattended.

Dimensions (mm)

0008

transmitters

Description

The room humidity/temperature transmitter serie KTI measures the temperature and humidity by capacitive sensors and converts the value into a linear output signal $0 \ldots 10$ VDC or $4 \ldots 20 \mathrm{~mA}$.

Technical specifications

Measurement range RH
Accuracy RH
Measurement range ${ }^{\circ} \mathrm{C}$
Accuracy ${ }^{\circ} \mathrm{C}$
Power supply
Power consumption
Working resistance at 0... 10 VDC
Working resistance at $4 \ldots 20 \mathrm{~mA}$
Electrical connection
Housing
Dimensions
Protection type
Working range RH
Working temperature ${ }^{\circ} \mathrm{C}$
Standards
0... 100 \% RH

2 \% RH
$0 \ldots 50^{\circ} \mathrm{C}, 0 \ldots 100^{\circ} \mathrm{C},-30 \ldots+70^{\circ} \mathrm{C},-40 \ldots+60^{\circ} \mathrm{C}$
$0,5^{\circ} \mathrm{C}$
24 VAC ($\pm 5 \%$) $50-60 \mathrm{~Hz} / 15 . . .35 \mathrm{VDC}$
< 2,5 W
min. 1 kOhm
max 500 Ohm
Screw terminals max. 1,5 mm²
ABS
See drawing
IP41
$0 . . .98 \% \mathrm{RH}$ in contaminant-free, non-condensing air $-30 . . .+80^{\circ} \mathrm{C}$

CE conformity, RoHS

Order matrix

Model	Accuracy		Output 1 Humidity		Output 2 Temperature		ption
KTI	2 \% RH	0 1 2 3 4 5	$\begin{gathered} \text { no output } \\ 0 \ldots . .10 \mathrm{~V} \\ 2 \ldots . .10 \mathrm{~V} \\ 0 . .5 \mathrm{~V} \\ 1 \ldots .5 \mathrm{~V} \\ 4 \ldots . .20 \mathrm{~mA} \end{gathered}$	0 1 2 3 4 5	no output $0 . . .10 \mathrm{~V}$ 2... 10 V $0 . . .5 \mathrm{~V}$ $1 . .5 \mathrm{~V}$ 4... 20 mA	$\begin{aligned} & \mathbf{M} \\ & \mathrm{D} \\ & \mathbf{R} \end{aligned}$	Modbus Display Relay*

*It is recommandable to order the relay version with display option.

DIP Switch

DIP	Temp. Ranges
NN	$0 . .50^{\circ} \mathrm{C}$
	$0 . .100^{\circ} \mathrm{C}$
ON Dip	$-30 \ldots+70^{\circ} \mathrm{C}$
	$-40 \ldots+60^{\circ} \mathrm{C}$

DIP	Response
10	1 sec.
ON Dip	5 sec.
	10 sec.
	30 sec .

Transmitter hardware

SW1 DIP Switch for configuration range and response time
X1 TERMINAL

11	24V	15... 35 VDC or $24 \mathrm{VAC}(\pm \% 5,50-60 \mathrm{~Hz}$)
12	GND	ground for power and reference for outputs
13	AO1	analog output 1
14	AO2	analog output 2
15	AO3	analog output 3
ERMINAL		
21	A / RS485	modbus communication positive pair
22	B / RS485	modbus communication negative pair
	not used not used	
\& RLY2	relay 1 and relay 2	
ERMINAL		
31	NO-RL1	relay 1 dry contact max. rating 1A@ 230 VAC
32	NO-RL1	relay 1 dry contact max. rating 1A @ 230 VAC

Electrical wirings

Relay contact rating is max. 1A at 230 VAC.
We kindly advise using 24 VAC for avoiding high voltage harmonics and external power relay for bigger loads.
Please use shielded and twisted paired cables for Modbus connections.

Display \& Buttons

press for increasing the value or choosing the next parameter
press for decreasing the value or choosing the previous parameter

main screen transmitter is working

keep pressing MENU button until seeing 0 transmitter is not working in MENU mode

Parameters for Relay \& Buzzer

Main Screen >>>>> r1 L > r1 H > r1A > Main Screen

LOW set point for Relay

HIGH set point for Relay

ACTION selection for Relay

Actions for Relay \& Buzzer

action 0 ,
relay contact is always OPEN
buzzer is always SILENCE
action 1 ,
relay contact is CLOSED between points, OPEN under LOWpoint and OPEN over HIGHpoint buzzer is WARNING between points, SILENCE under LOWpoint and SILENCE over HIGHpoint
action 2 ,
relay contact is OPEN between points, CLOSED under LOWpoint and OPEN over HIGHpoint buzzer is SILENCE between points, WARNING under LOWpoint and SILENCE over HIGHpoint
action 3,
relay contact is CLOSED over HIGHpoint, OPEN under LOWpoint, hysterisis between points buzzer is WARNING over HIGHpoint, SILENCE under LOWpoint, hysterisis between points
action 4,
relay contact is OPEN over HIGHpoint, CLOSED under LOWpoint, hysterisis between points buzzer is SILENCE over HIGHpoint, WARNING under LOWpoint, hysterisis between points

ACTIONS	under LOW	between LOW \& HIGH	over HIGH
$0: 0.0 .0$	Open	Open	Open
$1: 0.1 .0$	Open	Closed	Open
$2: 1.0 .1$	Closed	Open	Closed
$3: 0$. X.I	Open	Hysteresis	Closed
$4: 1$. X.0	Closed	Hysteresis	Open

0 : Relay Contact is OPEN, Buzzer is in Silent mode
I : Relay Contact is CLOSED, Buzzer is in Warning mode
X : Relay Contact is at HYSTERESIS position, OPEN if previous position open, CLOSED if previous position closed

Modbus RS485 protocol

Default Settings: Modbus ID:1, 9600, 8bit, None, 1. Register Table starts from Base 1.
Use Function 3 for Reading and Function 6 for Writing Holding Registers. Whenever writing to any Modbus Parameter, new parameter is activated instantly and you should have to configure master device according to new parameters. For every reboot/initializing, Modbus is activated with default parameters for 3 seconds. After 3seconds, Modbus is reconfigured according your parameter settings.
Unlisted registers are for analog output calibrations and some system parameters. Please do not change unlisted registers.

Register	R/W	Range	Description
1	R \& W	1... 254	Modbus Address
2	R \& W	0... 4	Baudrate, 0: 9.600, 1: 19.200, 2: 38.400, 3: 57.600, 4: 115.200
3	R \& W	0... 3	Bit_Parity_Stop, 0: 8bit_None_1, 1: 8bit_None_2, 2: 8bit_Even_1, 3: 8bit_Odd_1
4	R		Humidity as \%RH $\times 10$, divide by 10 for exact value
5	R		Temperature as $\mathrm{C} \times 10$, divide by 10 for exact value
6	R	0 or 1	Relay 1, contact position, 0: OFF - Contact is Open, 1: ON - Contact is Closed
7	R	0...1.000	Relay 1, LOW point
8	R	0..1.000	Relay 1, HIGH point
9	R	0... 4	Relay 1, ACTION
10	R	0 or 1	Relay 2, contact position, 0: OFF - Contact is Open, 1: ON - Contact is Closed
11	R	0...1.000	Relay 2, LOW point
12	R	0..1.000	Relay 2, HIGH point
13	R	0... 4	Relay 2, ACTION
14	R	0 or 1	Buzzer, 0: OK-Silence, 1: PreAlarm - warning intermittently, 2: WARNING continuously
15	R	0..1.000	Buzzer, LOW point
16	R	0...1.000	Buzzer, HIGH point
17	R	0... 4	Buzzer, ACTION
18-29	R		Only for service needs
30	R		Blank
31	R		Temperature as $\mathrm{C} \times 10$, divide by 10 for exact value
32	R		Temperature as C
33	R		Temperature as F x10, divide by 10 for exact value
34	R		Temperature as F
35	R		Humidity as \%RH $\times 10$, divide by 10 for exact value
36	R		Humidity as \%RH

Dimensions (mm)

without relay

with relay

Description

The outdoor temperature/humidity transmitter serie KTO measures the temperature and humidity by capacitive sensors and converts the value into a linear output signal $0 \ldots 10$ VDC or $4 \ldots 20 \mathrm{~mA}$.

Technical specifications

Measurement range RH
Accuracy RH
Measurement range ${ }^{\circ} \mathrm{C}$
Accuracy ${ }^{\circ} \mathrm{C}$
Power supply
Power consumption
Working resistance at 0... 10 VDC
Working resistance at $4 \ldots 20 \mathrm{~mA}$
Electrical connection
Housing
Dimensions
Protection type
Working range RH
Working temperature ${ }^{\circ} \mathrm{C}$
Standards
0... 100 \% RH

2 \% RH
$0 \ldots 50^{\circ} \mathrm{C}, 0 \ldots 100^{\circ} \mathrm{C},-30 \ldots+70^{\circ} \mathrm{C},-40 \ldots+60^{\circ} \mathrm{C}$
$0,5^{\circ} \mathrm{C}$
24 VAC ($\pm 5 \%$) $50-60 \mathrm{~Hz} / 15 \ldots 35 \mathrm{VDC}$
< 2,5 W
min. 1 kOhm
max 500 Ohm
Screw terminals max. $1,5 \mathrm{~mm}^{2}$
ABS
See drawing
IP41
$0 . . .98 \% \mathrm{RH}$ in contaminant-free, non-condensing air $-30 \ldots+80^{\circ} \mathrm{C}$
CE conformity, RoHS

Order matrix

Model	Accuracy		Output 1 Humidity		Output 2 Temperature		ption
KTO	2 \%RH	0 1 2 3 4 5	no output $0 . . .10 \mathrm{~V}$ 2... 10 V $0 . . .5 \mathrm{~V}$ 1 ... 5 V $4 . . .20 \mathrm{~mA}$	0 1 2 3 4 5	$\begin{gathered} \text { no output } \\ 0 \ldots . .10 \mathrm{~V} \\ 2 \ldots .10 \mathrm{~V} \\ 0 \ldots 5 \mathrm{~V} \\ 1 \ldots .5 \mathrm{~V} \\ 4 \ldots . .20 \mathrm{~mA} \end{gathered}$	$\begin{aligned} & \hline \mathbf{M} \\ & \mathbf{D} \\ & \mathbf{R} \end{aligned}$	Modbus Display Relay*

*It is recommandable to order the relay version with display option.

DIP Switch

DIP	Temp. Ranges
Tin	$0 . .50^{\circ} \mathrm{C}$
	$0 . .100^{\circ} \mathrm{C}$
	$-30 \ldots+70^{\circ} \mathrm{C}$
	$-40 . . .+60^{\circ} \mathrm{C}$

DIP	Response
	1 sec.
	5 sec.
	10 sec.
	30 sec .

Transmitter hardware

SW1 DIP Switch for configuration range and response time
X1 TERMINAL

11
12
13
14
X2 TERMINAL
21
22

24 V GND
AO1 AO2

A / RS485

 B / RS485$15 . . .35 \mathrm{VDC}$ or $24 \mathrm{VAC}(\pm \% 5,50-60 \mathrm{~Hz})$ ground for power and reference for outputs analog output 1 analog output 2
bead LED, periodically lights ON and OFF modbus communication, blinks when there is a communication
TR1 not used
TR2 not used
ZERO / TR3 not used
RL1 \& RL2 relay 1 and relay 2

BZ

buzzer
X3 TERMINAL
31
32
NO - RL1
relay 1 dry contact max. rating 1A @ 230 VAC
NO - RL1
relay 1 dry contact max. rating 1A @ 230 VAC

Electrical wirings

Relay contact rating is max. 1A at 230 VAC.
We kindly advise using 24 VAC for avoiding high voltage harmonics and external power relay for bigger loads. Please use shielded and twisted paired cables for Modbus connections.

Display \& Buttons

keep pressing MENU button until seeing 0 transmitter is not working in MENU mode

Parameters for Relay \& Buzzer

Main Screen >>>>> r1 L > r1 H > r1 A > Main Screen

LOW set point for Relay

HIGH set point for Relay

ACTION selection for Relay

Actions for Relay \& Buzzer

action 0,
relay contact is always OPEN
buzzer is always SILENCE

ACTIONS	under LOW	between LOW \& HIGH	over HIGH
$0: 0.0 .0$	Open	Open	Open
$1: 0.1 .0$	Open	Closed	Open
$2: 1.0 .1$	Closed	Open	Closed
$3: 0$. X.I	Open	Hysteresis	Closed
$4: 1$. X. 0	Closed	Hysteresis	Open

0 : Relay Contact is OPEN, Buzzer is in Silent mode
I : Relay Contact is CLOSED, Buzzer is in Warning mode
X : Relay Contact is at HYSTERESIS position, OPEN if previous position open, CLOSED if previous position closed

Modbus RS485 protocol

Default Settings: Modbus ID:1, 9600, 8bit, None, 1. Register Table starts from Base 1.
Use Function 3 for Reading and Function 6 for Writing Holding Registers. Whenever writing to any Modbus Parameter, new parameter is activated instantly and you should have to configure master device according to new parameters. For every reboot/initializing, Modbus is activated with default parameters for 3 seconds. After 3seconds, Modbus is reconfigured according your parameter settings.
Unlisted registers are for analog output calibrations and some system parameters. Please do not change unlisted registers.

Register	R/W	Range	Description
1	R \& W	1... 254	Modbus Address
2	R \& W	0... 4	Baudrate, 0: 9.600, 1: 19.200, 2: 38.400, 3: 57.600, 4: 115.200
3	R \& W	0... 3	Bit_Parity_Stop, 0: 8bit_None_1, 1: 8bit_None_2, 2: 8bit_Even_1, 3: 8bit_Odd_1
4	R		Humidity as \%rH $\times 10$, divide by 10 for exact value
5	R		Temperature as $\mathrm{C} \times 10$, divide by 10 for exact value
6	R	0 or 1	Relay 1, contact position, 0: OFF - Contact is Open, 1: ON - Contact is Closed
7	R	0...1.000	Relay 1, LOW point
8	R	0...1.000	Relay 1, HIGH point
9	R	0... 4	Relay 1, ACTION
10	R	0 or 1	Relay 2, contact position, 0: OFF - Contact is Open, 1: ON - Contact is Closed
11	R	0...1.000	Relay 2, LOW point
12	R	0...1.000	Relay 2, HIGH point
13	R	0... 4	Relay 2, ACTION
14	R	0 or 1	Buzzer, 0: OK-Silence, 1: PreAlarm - warning intermittently, 2: WARNING continuously
15	R	0...1.000	Buzzer, LOW point
16	R	0...1.000	Buzzer, HIGH point
17	R	0... 4	Buzzer, ACTION
18-29	R		Only for service needs
30	R		Blank
31	R		Temperature as $\mathrm{C} \times 10$, divide by 10 for exact value
32	R		Temperature as C
33	R		Temperature as F x10, divide by 10 for exact value
34	R		Temperature as F
35	R		Humidity as \%RH $\times 10$, divide by 10 for exact value
36	R		Humidity as \%RH

Dimensions (mm)

Description

The duct temperature/humidity transmitter serie KTD measures the temperature and humidity by capacitive sensors and converts the value into a linear output signal $0 \ldots 10$ VDC or $4 \ldots 20 \mathrm{~mA}$.

Technical specifications

Measurement range RH
Accuracy RH
Measurement range ${ }^{\circ} \mathrm{C}$
Accuracy ${ }^{\circ} \mathrm{C}$
Power supply
Power consumption
Working resistance at $0 . . .10$ VDC
Working resistance at $4 \ldots 20 \mathrm{~mA}$
Electrical connection
Housing
Dimensions
Protection type
Working range RH
Working temperature ${ }^{\circ} \mathrm{C}$
Standards
0... 100 \% RH

2 \% RH
$0 \ldots 50^{\circ} \mathrm{C}, 0 \ldots 100^{\circ} \mathrm{C},-30 \ldots+70^{\circ} \mathrm{C},-40 \ldots+60^{\circ} \mathrm{C}$
$0,5^{\circ} \mathrm{C}$
24 VAC ($\pm 5 \%$) $50-60 \mathrm{~Hz} / 15 \ldots 35 \mathrm{VDC}$
< 2,5 W
min. 1 kOhm
max 500 Ohm
Screw terminals max. 1,5 mm²
ABS
See drawing
IP41
$0 . . .98 \% \mathrm{RH}$ in contaminant-free, non-condensing air $-30 \ldots+80^{\circ} \mathrm{C}$
CE conformity, RoHS

Order matrix

Model	Accuracy		Output 1 Humidity		Output 2 Temperature	Option	
KTD	2 \%RH	0 1 2 3 4 5	no output $0 . . .10 \mathrm{~V}$ 2... 10 V $0 . . .5 \mathrm{~V}$ 1... 5 V 4... 20 mA	0 1 2 3 4 5	no output $0 . . .10 \mathrm{~V}$ 2... 10 V $0 . . .5 \mathrm{~V}$ 1... 5 V 4... 20 mA	$\begin{aligned} & \mathrm{M} \\ & \mathrm{D} \\ & \mathrm{R} \end{aligned}$	Modbus Display Relay*

*It is recommandable to order the relay version with display option.

DIP Switch

DIP	Temp. Ranges
DN	$0 . .50^{\circ} \mathrm{C}$
	$0 . .100^{\circ} \mathrm{C}$
	$-30 \ldots+70^{\circ} \mathrm{C}$
	$-40 \ldots+60^{\circ} \mathrm{C}$

DIP	Response
	1 sec.
	5 sec.
MN	10 sec.
	30 sec .

Transmitter hardware

SW1 DIP Switch for configuration range and response time
X1 TERMINAL

11
12
13
14
X2 TERMINAL
21
22

24V GND
AO1 AO2

A / RS485

 B / RS485$15 . . .35 \mathrm{VDC}$ or $24 \mathrm{VAC}(\pm \% 5,50-60 \mathrm{~Hz})$ ground for power and reference for outputs analog output 1 analog output 2

LED
bead LED, periodically lights ON and OFF modbus communication, blinks when there is a communication
TR1 not used
TR2 not used
ZERO / TR3 not used
RL1
relay 1
BZ buzzer
X3 TERMINAL
31
NO - RL1
relay 1 dry contact max. rating 1A @ 230 VAC
32
NO-RL1
relay 1 dry contact max. rating 1A @ 230 VAC

Electrical wirings

Relay contact rating is max. 1A at 230 VAC.
We kindly advise using 24 VAC for avoiding high voltage harmonics and external power relay for bigger loads. Please use shielded and twisted paired cables for Modbus connections.

Display \& Buttons

main screen transmitter is working

keep pressing MENU button until seeing 0 transmitter is not working in MENU mode

Parameters for Relay \& Buzzer

Main Screen >>>>> r1 L > r1 H > r1 A > Main Screen

LOW set point for Relay

HIGH set point for Relay

ACTION selection for Relay

Actions for Relay \& Buzzer

action 0 ,
relay contact is always OPEN
buzzer is always SILENCE
action 1 ,
relay contact is CLOSED between points, OPEN under LOWpoint and OPEN over HIGHpoint buzzer is WARNING between points, SILENCE under LOWpoint and SILENCE over HIGHpoint
action 2,
relay contact is OPEN between points, CLOSED under LOWpoint and OPEN over HIGHpoint buzzer is SILENCE between points, WARNING under LOWpoint and SILENCE over HIGHpoint
action 3,
relay contact is CLOSED over HIGHpoint, OPEN under LOWpoint, hysterisis between points buzzer is WARNING over HIGHpoint, SILENCE under LOWpoint, hysterisis between points
action 4,
relay contact is OPEN over HIGHpoint, CLOSED under LOWpoint, hysterisis between points buzzer is SILENCE over HIGHpoint, WARNING under LOWpoint, hysterisis between points

ACTIONS	under LOW	between LOW \& HIGH	over HIGH
$0: 0.0 .0$	Open	Open	Open
$1: 0.1 .0$	Open	Closed	Open
$2: 1.0 .1$	Closed	Open	Closed
$3: 0$. X.I	Open	Hysteresis	Closed
$4: 1$. X.0	Closed	Hysteresis	Open

0 : Relay Contact is OPEN, Buzzer is in Silent mode
I : Relay Contact is CLOSED, Buzzer is in Warning mode
X : Relay Contact is at HYSTERESIS position, OPEN if previous position open, CLOSED if previous position closed

Modbus RS485 protocol

Default Settings: Modbus ID:1, 9600, 8bit, None, 1. Register Table starts from Base 1.
Use Function 3 for Reading and Function 6 for Writing Holding Registers. Whenever writing to any Modbus Parameter, new parameter is activated instantly and you should have to configure master device according to new parameters. For every reboot/initializing, Modbus is activated with default parameters for 3 seconds. After 3seconds, Modbus is reconfigured according your parameter settings.
Unlisted registers are for analog output calibrations and some system parameters. Please do not change unlisted registers.

Register	R/W	Range	Description
1	R \& W	1... 254	Modbus Address
2	R \& W	0... 4	Baudrate, 0: 9.600, 1: 19.200, 2: 38.400, 3: 57.600, 4: 115.200
3	R \& W	0... 3	Bit_Parity_Stop, 0: 8bit_None_1, 1: 8bit_None_2, 2: 8bit_Even_1, 3: 8bit_Odd_1
4	R		Humidity as \%rH $\times 10$, divide by 10 for exact value
5	R		Temperature as $\mathrm{C} \times 10$, divide by 10 for exact value
6	R	0 or 1	Relay 1, contact position, 0: OFF - Contact is Open, 1: ON - Contact is Closed
7	R	0...1.000	Relay 1, LOW point
8	R	0...1.000	Relay 1, HIGH point
9	R	0... 4	Relay 1, ACTION
10	R	0 or 1	Relay 2, contact position, 0: OFF - Contact is Open, 1: ON - Contact is Closed
11	R	0...1.000	Relay 2, LOW point
12	R	0...1.000	Relay 2, HIGH point
13	R	0... 4	Relay 2, ACTION
14	R	0 or 1	Buzzer, 0: OK-Silence, 1: PreAlarm - warning intermittently, 2: WARNING continuously
15	R	0...1.000	Buzzer, LOW point
16	R	0...1.000	Buzzer, HIGH point
17	R	0... 4	Buzzer, ACTION
18-29	R		Only for service needs
30	R		Blank
31	R		Temperature as C x10, divide by 10 for exact value
32	R		Temperature as C
33	R		Temperature as F x10, divide by 10 for exact value
34	R		Temperature as F
35	R		Humidity as \%RH x10, divide by 10 for exact value
36	R		Humidity as \%RH

Dimensions (mm)

Description

The $\mathrm{KSICCO} \mathrm{CO}_{2}$ room sensor measures air quality through the presence of carbon dioxide in the range between 0 and 10 kppm . The measurement of CO_{2} concentration happens through a maintenance free NDIR sensor that operates on an infrared basis and which compensates the presence of any impurity. The product is provided different outputs.

Technical specifications

Measurement range CO_{2}
Accuracy CO_{2}
Accuracy temperature (*)
Accuracy humidity (*)
Power supply
Consumption
Sensible element
Output
Electrical connection
Protection type
Working range RH
Working temperature ${ }^{\circ} \mathrm{C}$
Storage temperature
Standards
400...2000, 0...2k, 0...5k, 0...10k ppm selectable $\pm 70 \mathrm{ppm}+3 \%$ reading
$\pm 0,3^{\circ} \mathrm{C}\left(5 \ldots 60^{\circ} \mathrm{C}\right)+1 \% \mathrm{FS}$
$\pm 2 \%$ RH ($20 \ldots 80 \% \mathrm{RH}$) $+2 \%$ FS
24 VAC ($\pm 5 \%$), $15 \ldots 35$ VDC
< 2,5 W
NDIR self adjusting
$0 . . .5$ VDC, $0 \ldots 10$ VDC, $4 \ldots 20 \mathrm{~mA}$, Modbus 485
Pluggable screw terminal for cables $1,5 \mathrm{~mm}^{2}$
IP41
10...95\% RH in contaminant-free, non-condensing air
$-30 \ldots+70^{\circ} \mathrm{C}$
$-20 \ldots+50^{\circ} \mathrm{C}$
CE conformity, RoHS

Order matrix

Model		Output 1 CO_{2}	Output 2 Temperature		Output 3 Humidity		Option	
KSIC	0 1 2 3 4 5	no output $\begin{gathered} 0 \ldots . .10 \mathrm{~V} \\ 2 \ldots 10 \mathrm{~V} \\ 0 \ldots 5 \mathrm{~V} \\ 1 \ldots 5 \mathrm{~V} \\ 4 \ldots 20 \mathrm{~mA} \end{gathered}$	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	no output $\begin{gathered} 0 \ldots . .10 \mathrm{~V} \\ 2 \ldots 10 \mathrm{~V} \\ 0 \ldots 5 \mathrm{~V} \\ 1 \ldots 5 \mathrm{~V} \\ 4 \ldots 20 \mathrm{~mA} \end{gathered}$	0 1 2 3 4 5	no output $\begin{gathered} 0 \ldots 10 \mathrm{~V} \\ 2 \ldots . .10 \mathrm{~V} \\ 0 \ldots 5 \mathrm{~V} \\ 1 \ldots 5 \mathrm{~V} \\ 4 \ldots 20 \mathrm{~mA} \end{gathered}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{D} \\ & \mathrm{R} \end{aligned}$	Modbus Display Relay*

*It is recommandable to order the relay version with display option.

DIP Switch

DIP 1-2	CO2 Ranges
	400-2.000 ppm
	0-2.000 ppm
	0-5.000 ppm
	0-10.000 ppm

DIP 4	Response
	60 sec .
	20 sec .

Transmitter hardware

SW1

X1 TERMINAL

11	24 V	15... 35 VDC or $24 \mathrm{VAC}(\pm \% 5,50-60 \mathrm{~Hz}$)
12	GND	ground for power and reference for outputs
13	A01	analog output 1
14	AO2	analog output 2
15	AO3	analog output 3
ERMINAL		
21	A / RS485	modbus communication positive pair
22	B / RS485	modbus communication negative pair
\& RLY2	relay 1 and relay 2	
RMINAL		
31	NO-RL1	relay 1 dry contact max. rating 1A @ 230 VAC
32	NO - RL1	relay 1 dry contact max. rating 1A@ 230 VAC

Electrical wirings

Relay contact rating is max. 1A at 230 VAC
We kindly advise using 24 V for avoiding high voltage harmonics and external power relay for bigger loads
Please use shielded and twisted paired cables for Modbus connections

Display \& Buttons

Parameters for Relay \& Buzzer

Main Screen >>>>> r1 L > r1 H > r1 A > Main Screen

LOW set point for Relay 1

HIGH set point for Relay 1

ACTION selection for Relay 1

Actions for Relay \& Buzzer

action 0 ,
relay contact is always OPEN
action 1 ,
relay contact is CLOSED between points, OPEN under LOWpoint and OPEN over HIGHpoint
action 2,
relay contact is OPEN between points, CLOSED under LOWpoint and OPEN over HIGHpoint
action 3,
relay contact is CLOSED over HIGHpoint, OPEN under LOWpoint, hysterisis between points
action 4,
relay contact is OPEN over HIGHpoint, CLOSED under LOWpoint, hysterisis between points

155

ACTIONS	under LOW	between LOW \& HIGH	over HIGH
$0: 0.0 .0$	Open	Open	Open
$1: 0.1 .0$	Open	Closed	Open
$2: 1.0 .1$	Closed	Open	Closed
$3: 0$. X.I	Open	Hysteresis	Closed
$4: 1 . X .0$	Closed	Hysteresis	Open

0 : Relay Contact is OPEN, Buzzer is in Silent mode
I : Relay Contact is CLOSED, Buzzer is in Warning mode
X : Relay Contact is at HYSTERESIS position, OPEN if previous position open, CLOSED if previous position closed

Modbus RS485 protocol

Default Settings: Modbus ID:1, 9600, 8bit, None, 1. Register Table starts from Base 1.
Use Function 3 for Reading and Function 6 for Writing Holding Registers. Whenever writing to any Modbus Parameter, new parameter is activated instantly and you should have to configure master device according to new parameters. For every reboot/initializing, Modbus is activated with default parameters for 3 seconds. After 3 seconds, Modbus is reconfigured according your parameter settings.
Unlisted registers are for analog output calibrations and some system parameters. Please do not change unlisted registers.

Register	R/W	Range	Description
1	R \& W	1... 254	Modbus Address
2	R \& W	0... 4	Baudrate, 0: 9.600, 1: 19.200, 2: 38.400, 3: 57.600, 4: 115.200
3	R \& W	0... 3	Bit_Parity_Stop, 0: 8bit_None_1, 1: 8bit_None_2, 2: 8bit_Even_1, 3: 8bit_Odd_1
4	R		CO2 level as ppm
5	R		Temperature as C $\times 100$, divide by 100 for exact value
6	R	0 or 1	Relay 1, contact position, 0: OFF - Contact is Open, 1: ON - Contact is Closed
7	R	0...1.000	Relay 1, LOW point
8	R	0...1.000	Relay 1, HIGH point
9	R	0... 4	Relay 1, ACTION
10	R	0 or 1	Relay 2, contact position, 0: OFF - Contact is Open, 1: ON - Contact is Closed
11	R	0...1.000	Relay 2, LOW point
12	R	0...1.000	Relay 2, HIGH point
13	R	0... 4	Relay 2, ACTION
14	R	0 or 1	Buzzer, 0: OK-Silence, 1: PreAlarm - warning intermittently, 2: WARNING continuously
15	R	0...1.000	Buzzer, LOW point
16	R	0...1.000	Buzzer, HIGH point
17	R	0... 4	Buzzer, ACTION
18-29	R		Only for service needs
30	R		CO2 level as ppm
31	R		Temperature as C x100, divide by 100 for exact value
32	R		Temperature as C
33	R		Temperature as F x100, divide by 100 for exact value
34	R		Temperature as F
35	R		Humidity as \%rH x100, divide by 100 for exact value
36	R		Humidity as \%rH

Dimensions (mm)

Description

The $\mathrm{KSDC} \mathrm{CO}_{2}$ sensor measures air quality through the presence of carbon dioxide in air ducts in the range between 0 and 10 kppm . The measurement of CO_{2} concentration happens through a maintenance free NDIR sensor that operates on an infrared basis and which compensates the presence of any impurity. The product is provided different outputs.

Technical specifications

Measurement range CO_{2}
Accuracy CO_{2}
Accuracy temperature (*)
Accuracy humidity (*)
Power supply
Consumption
Sensible element
Output
Electrical connection
Protection type
Working range RH
Working temperature ${ }^{\circ} \mathrm{C}$
Storage temperature
Standards
400...2000, 0...2k, 0...5k, 0...10k ppm selectable $\pm 70 \mathrm{ppm}+3 \%$ reading
$\pm 0,3^{\circ} \mathrm{C}\left(5 \ldots 60^{\circ} \mathrm{C}\right)+1 \% \mathrm{FS}$
$\pm 2 \%$ RH $(20 \ldots 80 \% R H)+2 \%$ FS
24 VAC ($\pm 5 \%), 15 \ldots 35$ VDC
< 2,5 W
NDIR self adjusting
$0 . . .5$ VDC, $0 \ldots 10$ VDC, $4 \ldots 20 \mathrm{~mA}$, Modbus 485
Pluggable screw terminal for cables $1,5 \mathrm{~mm}^{2}$
IP41
10... 95% RH in contaminant-free, non-condensing air
$-30 \ldots+70^{\circ} \mathrm{C}$
$-20 \ldots+50^{\circ} \mathrm{C}$
CE conformity, RoHS

Order matrix

Model		Output 1 CO_{2}	Output 2 Temperature		Output 3 Humidity		Option	
KSDC	0 1 2 3 4 5	no output $\begin{gathered} 0 \ldots . .10 \mathrm{~V} \\ 2 \ldots . .10 \mathrm{~V} \\ 0 \ldots .5 \mathrm{~V} \\ 1 \ldots .5 \mathrm{~V} \\ 4 \ldots . .20 \mathrm{~mA} \end{gathered}$	0 1 2 3 4 5	no output $\begin{gathered} 0 \ldots . .10 \mathrm{~V} \\ 2 \ldots .10 \mathrm{~V} \\ 0 \ldots 5 \mathrm{~V} \\ 1 \ldots 5 \mathrm{~V} \\ 4 \ldots . .20 \mathrm{~mA} \end{gathered}$	0 1 2 3 4 5	no output $\begin{gathered} 0 \ldots . .10 \mathrm{~V} \\ 2 \ldots . .10 \mathrm{~V} \\ 0 \ldots 5 \mathrm{~V} \\ 1 \ldots 5 \mathrm{~V} \\ 4 \ldots . .20 \mathrm{~mA} \end{gathered}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{D} \\ & \mathrm{R} \end{aligned}$	Modbus Display Relay*

*It is recommandable to order the relay version with display option.

DIP Switch

DIP 1-2	CO2 Ranges
	400-2.000 ppm
	0-2.000 ppm
	0-5.000 ppm
	0-10.000 ppm

DIP 4	Response
Tn	60 sec .
	20 sec .

Transmitter hardware

SW1 DIP Switch for configuration range and response time
X1 TERMINAL

11
12
13
14
X2 TERMINAL
21
22
LED

TR1 not used
TR2 not used
ZERO / TR3 not used
RL1
BZ
X3 TERMINAL
31
32

24V
GND
AO1
AO2

A / RS485
B / RS485 relay 1 buzzer
15... 35 VDC or 24 VAC ($\pm \% 5,50-60 \mathrm{~Hz}$) ground for power and reference for outputs analog output 1 analog output 2
modbus communication positive pair modbus communication negative pair
bead LED, periodically lights ON and OFF modbus communication, blinks when there is a communication

NO - RL1	relay 1 dry contact max. rating $1 \mathrm{~A} @ 230$ VAC
NO - RL1	relay 1 dry contact max. rating $1 \mathrm{~A} @ 230$ VAC

Electrical wirings

Relay contact rating is max. 1A at 230 VAC
We kindly advise using 24 V for avoiding high voltage harmonics and external power relay for bigger loads
Please use shielded and twisted paired cables for Modbus connections

Display \& Buttons

main screen
transmitter is working

keep pressing MENU button until seeing 0 transmitter is not working in MENU mode

Parameters for Relay \& Buzzer

Main Screen >>>>> r1 L>r1 H > r1A > Main Screen

LOW set point for Relay

HIGH set point for Relay

ACTION selection for Relay

Actions for Relay \& Buzzer

action 0 ,
relay contact is always OPEN

action 1,
relay contact is CLOSED between points, OPEN under LOWpoint and OPEN over HIGHpoint

action 2 ,
relay contact is OPEN between points, CLOSED under LOWpoint and OPEN over HIGHpoint

action 3,
relay contact is CLOSED over HIGHpoint, OPEN under LOWpoint, hysterisis between points

action 4,
relay contact is OPEN over HIGHpoint, CLOSED under LOWpoint, hysterisis between points

ACTIONS	under LOW	between LOW \& HIGH	over HIGH
$0: 0.0 .0$	Open	Open	Open
$1: 0.1 .0$	Open	Closed	Open
$2: I .0 . I$	Closed	Open	Closed
$3: 0 . X . I$	Open	Hysteresis	Closed
$4:$ I.X.0	Closed	Opsteresis	
$0:$ Relay Contact is OPEN, Buzzer is in Silent mode			
I : Relay Contact is CLOSED, Buzzer is in Warning mode			
X : Relay Contact is at HYSTERESIS position, OPEN if previous position open, CLOSED if previous position closed			

Modbus RS485 protocol

Default Settings: Modbus ID:1, 9600, 8bit, None, 1. Register Table starts from Base 1.
Use Function 3 for Reading and Function 6 for Writing Holding Registers. Whenever writing to any Modbus Parameter, the new parameter is activated instantly and you should have to configure the master device according to new parameters. For every reboot/initializing, Modbus is activated with default parameters for 3 seconds. After 3 seconds, Modbus is reconfigured according to your parameter settings. Unlisted registers are for analog output calibrations and some system parameters. Please do not change unlisted registers.

Register	R/W	Range	Description
1	R \& W	1... 254	Modbus Address
2	R \& W	0... 2	Baudrate, 0: 9.600, 1: 19.200
3	R \& W	0... 3	Bit_Parity_Stop, 0: 8bit_None_1, 1: 8bit_None_2, 2: 8bit_Even_1, 3: 8bit_Odd_1
4	R		CO2 level as ppm
5	R		Temperature as C $\times 100$, divide by 100 for exact value
6	R	0 or 1	Relay 1, contact position, 0: OFF - Contact is Open, 1: ON - Contact is Closed
7	R	0...1.000	Relay 1, LOW point
8	R	0...1.000	Relay 1, HIGH point
9	R	0... 4	Relay 1, ACTION
10	R	0 or 1	Relay 2, contact position, 0: OFF - Contact is Open, 1: ON - Contact is Closed
11	R	0...1.000	Relay 2, LOW point
12	R	0...1.000	Relay 2, HIGH point
13	R	0... 4	Relay 2, ACTION
14	R	0 or 1	Buzzer, 0: OK-Silence, 1: PreAlarm - warning intermittently, 2: WARNING continuously
15	R	0...1.000	Buzzer, LOW point
16	R	0...1.000	Buzzer, HIGH point
17	R	0... 4	Buzzer, ACTION
18-29	R		Only for service needs
30	R		CO2 level as ppm
31	R		Temperature as C x100, divide by 100 for exact value
32	R		Temperature as C
33	R		Temperature as F x100, divide by 100 for exact value
34	R		Temperature as F
35	R		Humidity as \%rH x100, divide by 100 for exact value
36	R		Humidity as \%rH

Dimensions (mm)

Description

The temperature transmitter serie TTI measures the room temperature by a sensor and converts the value into a linear output signal $0 . .10$ VDC o $4 . . .20 \mathrm{~mA}$.

Technical specifications

Measurement range	See configurator
Accuracy	$\pm 0,2^{\circ} \mathrm{C}+$ max 3% FS
Sensor	PT1000 Class B (2-wire)
Power supply	$12 \ldots . .34 \mathrm{VAC} / \mathrm{DC}$
Working resistance at $0 \ldots . .10 \mathrm{~V}$ DC	$10 \ldots . .100 \mathrm{kOhm}$
Working resistance at $4 \ldots . .20 \mathrm{~mA}$	$50 \ldots .500 \mathrm{Ohm}$
Current consumption	$24 \ldots 44 \mathrm{~mA}$
Electrical connection	Screw terminals max. $1,5 \mathrm{~mm}^{2}$
Display	Optional, display the actual temperature
Dimensions	See drawing
Housing	ABS, RAL 9010
Protection type	IP20
Protection class	III
Installation	Screw fastening
Standards	CE conformity, RoHS

Model	Output	Version
TTIC	$4 \ldots 20 \mathrm{~mA}$	
TTICD	$4 \ldots 20 \mathrm{~mA}$	with display
TTIV	$0 \ldots 10 \mathrm{~V} \mathrm{DC}$	
TTIVD	$0 \ldots 10 \mathrm{~V} \mathrm{DC}$	with display

Electrical wirings

Output $\mathbf{0} \ldots \mathbf{. . 1 0} \mathbf{~ V ~}$		Output 4...20 mA	
PIN	Assignment	PIN	Assignment
1	Temp.	1	-
2	-	2	-
3	-	3	Temp.
4	-	4	-
7	+	7	+
8	GND	8	GND

Settings

	Range	1	2	3	4	5	6	7	8	ㄷ $\overline{0}$ 0	Range	1	2	3	4	5	6	7	8
	$-100 \ldots+50^{\circ} \mathrm{C}$	OFF	OFF	OFF	OFF	OFF	-	-	-		$-10 \ldots+120^{\circ} \mathrm{C}$	OFF	OFF	ON	ON	OFF	-	-	-
	$-50 \ldots . .0^{\circ} \mathrm{C}$	ON	OFF	OFF	OFF	OFF	-	-	-		$0 \ldots+40^{\circ} \mathrm{C}$	ON	OFF	ON	ON	OFF	-	-	-
	$-50 . .50^{\circ} \mathrm{C}$	OFF	ON	OFF	OFF	OFF	-	-	-		$0 . . .+50^{\circ} \mathrm{C}$	OFF	ON	ON	ON	OFF	-	-	-
	$-50 \ldots+150^{\circ} \mathrm{C}$	ON	ON	OFF	OFF	OFF	-	-	-		$0 . . .+70^{\circ} \mathrm{C}$	ON	ON	ON	ON	OFF	-	-	-
	$-30 \ldots+20^{\circ} \mathrm{C}$	OFF	OFF	ON	OFF	OFF	-	-	-		0... $+100^{\circ} \mathrm{C}$	OFF	OFF	OFF	OFF	ON	-	-	-
	$-30 \ldots+60^{\circ} \mathrm{C}$	ON	OFF	ON	OFF	OFF	-	-	-		0... $+150^{\circ} \mathrm{C}$	ON	OFF	OFF	OFF	ON	-	-	-
	$-30 \ldots+70^{\circ} \mathrm{C}$	OFF	ON	ON	OFF	OFF	-	-	-		0... $+160^{\circ} \mathrm{C}$	OFF	ON	OFF	OFF	ON	-	-	-
	$-20 \ldots+50^{\circ} \mathrm{C}$	ON	ON	ON	OFF	OFF	-	-	-		0... $+200^{\circ} \mathrm{C}$	ON	ON	OFF	OFF	ON	-	-	-
	$-20 \ldots+80^{\circ} \mathrm{C}$	OFF	OFF	OFF	ON	OFF	-	-	-		0... $+250^{\circ} \mathrm{C}$	OFF	OFF	ON	OFF	ON	-	-	-
	$-20 \ldots+120^{\circ} \mathrm{C}$	ON	OFF	OFF	ON	OFF	-	-	-		0... $+400^{\circ} \mathrm{C}$	ON	OFF	ON	OFF	ON	-	-	-
	$-20 \ldots+150^{\circ} \mathrm{C}$	OFF	ON	OFF	ON	OFF	-	-	-		0.... $+600^{\circ} \mathrm{C}$	OFF	ON	ON	OFF	ON	-	-	-
	$-10 \ldots+15^{\circ} \mathrm{C}$	ON	ON	OFF	ON	OFF	-	-	-		$+10 \ldots+35^{\circ} \mathrm{C}$	ON	ON	ON	OFF	ON	-	-	-

Dimensions (mm)

Description

The temperature transmitter serie TTO measures the outdoor temperature by sensor and converts the value into a linear output signal 0... 10 VDC o 4... 20 mA .

Technical specifications

Measurement range ${ }^{\circ} \mathrm{C}$

Accuracy ${ }^{\circ} \mathrm{C}$
Power supply
Working resistance at $0 \ldots 10 \mathrm{~V}$ DC
Working resistance at $4 \ldots 20 \mathrm{~mA}$
Consumption
Electrical connection
Housing
Dimensions
Protection type
Protection class
Working range RH
Working temperature ${ }^{\circ} \mathrm{C}$
Standards

See configurator
$\pm 0,2^{\circ} \mathrm{C}+\max 3 \%$ of FS
12... $34 \mathrm{VAC} / \mathrm{DC}$
10... 100 kOhm
50... 500 Ohm
$24 . . .44 \mathrm{~mA}$
Screw terminals max. $1,5 \mathrm{~mm}^{2}$
PA6 15\% GF, RAL9010
See drawing
IP65
III
$0 . . .98 \% \mathrm{RH}$ in contaminant-free, non-condensing air
$-30 \ldots+70^{\circ} \mathrm{C}$
CE conformity, RoHS

Models	Temp. output
TTOC*	Version
TTOCD	$4 \ldots . .20 \mathrm{~mA}$
TTOV	$0 . . .10 \mathrm{~mA}$
TTOVD	$0 \ldots 10 \mathrm{~V}$ DC

* available 2-wire version

Electrical wirings

Setting

	Range	1	2	3	4	5	6	7	8		Range	1	2	3	4	5	6	7	8
	$-100 \ldots+50^{\circ} \mathrm{C}$	OFF	OFF	OFF	OFF	OFF	-	-	-		$-10 \ldots+120^{\circ} \mathrm{C}$	OFF	OFF	ON	ON	OFF	-	-	-
	$-50 \ldots 0^{\circ} \mathrm{C}$	ON	OFF	OFF	OFF	OFF	-	-	-		$0 . . .40^{\circ} \mathrm{C}$	ON	OFF	ON	ON	OFF	-	-	-
	$-50 \ldots 50^{\circ} \mathrm{C}$	OFF	ON	OFF	OFF	OFF	-	-	-		$0 . . .+50^{\circ} \mathrm{C}$	OFF	ON	ON	ON	OFF	-	-	-
	$-50 \ldots+150^{\circ} \mathrm{C}$	ON	ON	OFF	OFF	OFF	-	-	-		0... $+70^{\circ} \mathrm{C}$	ON	ON	ON	ON	OFF	-	-	-
	$-30 \ldots+20^{\circ} \mathrm{C}$	OFF	OFF	ON	OFF	OFF	-	-	-		0... $+100^{\circ} \mathrm{C}$	OFF	OFF	OFF	OFF	ON	-	-	-
	$-30 \ldots+60^{\circ} \mathrm{C}$	ON	OFF	ON	OFF	OFF	-	-	-		0... $+150^{\circ} \mathrm{C}$	ON	OFF	OFF	OFF	ON	-	-	-
	$-30 \ldots+70^{\circ} \mathrm{C}$	OFF	ON	ON	OFF	OFF	-	-	-		0... $+160^{\circ} \mathrm{C}$	OFF	ON	OFF	OFF	ON	-	-	-
	$-20 . . .+50^{\circ} \mathrm{C}$	ON	ON	ON	OFF	OFF	-	-	-		0... $+200^{\circ} \mathrm{C}$	ON	ON	OFF	OFF	ON	-	-	-
	$-20 \ldots+80^{\circ} \mathrm{C}$	OFF	OFF	OFF	ON	OFF	-	-	-		0... $+250^{\circ} \mathrm{C}$	OFF	OFF	ON	OFF	ON	-	-	-
	$-20 \ldots+120^{\circ} \mathrm{C}$	ON	OFF	OFF	ON	OFF	-	-	-		0... $+400^{\circ} \mathrm{C}$	ON	OFF	ON	OFF	ON	-	-	-
	$-20 \ldots+150^{\circ} \mathrm{C}$	OFF	ON	OFF	ON	OFF	-	-	-		0... $+600{ }^{\circ} \mathrm{C}$	OFF	ON	ON	OFF	ON	-	-	-
	$-10 \ldots+15^{\circ} \mathrm{C}$	ON	ON	OFF	ON	OFF	-	-	-		$+10 \ldots+35^{\circ} \mathrm{C}$	ON	ON	ON	OFF	ON	-	-	-

Dimensions (mm)

Description

The temperature transmitter serie TTOM measures the outdoor temperature by sensor and converts the value into a Modbus output signal.

Technical specifications

Accuracy ${ }^{\circ} \mathrm{C}$	$\pm 0,2^{\circ} \mathrm{K} \pm 1 \%$ of FS
Power supply	$12 \ldots 34 \mathrm{VAC} / \mathrm{DC}$
Consumption	$10 \ldots 20 \mathrm{~mA}$
Electrical connection	Screw terminals max. $1,5 \mathrm{~mm}^{2}$
Housing	PA 15% GF, RAL9010
Dimensions	See drawing
Protection type	IP 65
Working range RH	$0 \ldots 98 \%$ RH in contaminant-free, non-condensing air
Working temperature ${ }^{\circ} \mathrm{C}$	$-30 \ldots+70^{\circ} \mathrm{C}$
Standards	CE conformity, RoHS

Electrical wirings

Dimension (mm)

Measurement source

Unit	ModBus source	Gain
Temperature ${ }^{\circ} \mathrm{C}$	20	10

Address	1	23	34	5	67	78	Indirizzo	12	23	45	6	78	Address	1	23	4	5	67	8	Indirizzo	1	23	4	6	7	Address	1	23	4	5	7	8	Address	1	3	4	5	67	8
1							43						84							125						166							207						
2							44						85							126						167							208						
3							45						86							127						168							209						
4							46						87							128						169							210						
5							47						88							129						170							211						
6							48						89							130						171							212						
7							49						90							131						172							213						
8							50						91							132						173							214						
9							51						92							133						174							215						
10							52						93							134						175							216						
11							53						94							135						176							217						
12							54						95							136						177							218						
13							55						96							137						178							219						
14							56						97							138						179							220						
15							57						98							139						180							221						
16							58						99							140						181							222						
17							59						100							141						182							223						
18							60						101							142						183							224						
19							61						102							143						184							225						
20							62						103							144						185							226						
21							63						104							145						186							227						
22							64						105							146						187							228						
23							65						106							147						188							229						
24							66						107							148						189							230						
25							67						108							149						190							231						
26							68						109							150						191							232						
27							69						110							151						192							233						
28							70						111							152						193							234						
29							71						112							153						194							235						
30							72						113							154						195							236						
31							73						114							155						196							237						
32							74						115							156						197							238						
33							75						116							157						198							239						
34							76						117							158						199							240						
35							77						118							159						200							241						
36							78						119							160						201							242						
37							79						120							161						202							243						
38							80						121							162						203							244						
39							81						122							163						204							245						
40							82						123							164						205							246						
41							83						124							165						206							247						
42																																							

ON		Switch at: ON
OFF		

TTD / TTS

Description

The temperature transmitter serie TTD/TTS measures the duct or screw-in temperature by sensor and converts the value into a linear output signal $0 . . .10 \mathrm{~V}$ DC o $4 \ldots 20 \mathrm{~mA}$.

Technical specifications

Measurement range ${ }^{\circ} \mathrm{C}$	See configurator
Accuracy ${ }^{\circ} \mathrm{C}$	$\pm 0,2^{\circ} \mathrm{C}+\max 3 \%$ of FS
Power supply	12... 34 V AC/DC
Working resistance at 0... 10 V DC	10... 100 kOhm
Working resistance at $4 \ldots 20 \mathrm{~mA}$	50... 500 Ohm
Consumption	24... 44 mA
Electrical connection	Screw terminals max. 1,5 mm
Housing	PA6 15\% GF, RAL9010
Dimensions	See drawing
Protection type	IP65
Protection class	III
Working range RH	0...98\% RH in contaminant-free, non-condensing air
Working temperature ${ }^{\circ} \mathrm{C}$	$-30 \ldots+70^{\circ} \mathrm{C}$
Standards	CE conformity, RoHS

Models	Temp. output	Version	Display
TTDC	4... 20 mA	Duct	
TTDCD	4... 20 mA	Duct	with display
TTDV	$0 . . .10 \mathrm{~V}$ DC	Duct	
TTDVD	$0 . . .10 \mathrm{~V}$ DC	Duct	with display
TTSC	4... 20 mA	Screw-in	
TTSCD	4... 20 mA	Screw-in	with display
TTSV	$0 . .10 \mathrm{~V}$ DC	Screw-in	
TTSVD	0... 10 V DC	Screw-in	with display

169

Electrical wirings

Output $\mathbf{0 . . . 1 0 ~ V ~}$		Output 4...20 mA	
PIN	Assignment	PIN	Assignment
1	Temp.	1	-
2	-	2	-
3	-	3	Temp.
4	-	4	-
7	+	7	+
8	GND	8	GND

Important: connections in parallel with 24 VAC to consider the phase to prevent short circuits. The device is designed to operate in a low voltage condition.

Setting

	Range	1	2	3	4	5	6	7	8		Range	1	2	3	4	5	6	7	8
	$-100 . . .50^{\circ} \mathrm{C}$	OFF	OFF	OFF	OFF	OFF	-	-	-		$-10 \ldots+120^{\circ} \mathrm{C}$	OFF	OFF	ON	ON	OFF	-	-	-
	$-50 \ldots . .{ }^{\circ} \mathrm{C}$	ON	OFF	OFF	OFF	OFF	-	-	-		$0 \ldots+40^{\circ} \mathrm{C}$	ON	OFF	ON	ON	OFF	-	-	-
	$-50 . . .50^{\circ} \mathrm{C}$	OFF	ON	OFF	OFF	OFF	-	-	-		$0 \ldots+50^{\circ} \mathrm{C}$	OFF	ON	ON	ON	OFF	-	-	-
	$-50 \ldots+150^{\circ} \mathrm{C}$	ON	ON	OFF	OFF	OFF	-	-	-		$0 . . .+70^{\circ} \mathrm{C}$	ON	ON	ON	ON	OFF	-	-	-
	$-30 . . .+20^{\circ} \mathrm{C}$	OFF	OFF	ON	OFF	OFF	-	-	-		0... $+100^{\circ} \mathrm{C}$	OFF	OFF	OFF	OFF	ON	-	-	-
	$-30 . . .+60^{\circ} \mathrm{C}$	ON	OFF	ON	OFF	OFF	-	-	-		$0 . . .+150^{\circ} \mathrm{C}$	ON	OFF	OFF	OFF	ON	-	-	-
	$-30 . . .+70^{\circ} \mathrm{C}$	OFF	ON	ON	OFF	OFF	-	-	-		$0 . . .+160^{\circ} \mathrm{C}$	OFF	ON	OFF	OFF	ON	-	-	-
	$-20 . . .+50^{\circ} \mathrm{C}$	ON	ON	ON	OFF	OFF	-	-	-		$0 . . .+200^{\circ} \mathrm{C}$	ON	ON	OFF	OFF	ON	-	-	-
	$-20 . . .+80^{\circ} \mathrm{C}$	OFF	OFF	OFF	ON	OFF	-	-	-		$0 . . .+250^{\circ} \mathrm{C}$	OFF	OFF	ON	OFF	ON	-	-	-
	$-20 \ldots+120^{\circ} \mathrm{C}$	ON	OFF	OFF	ON	OFF	-	-	-		$0 . . .+400^{\circ} \mathrm{C}$	ON	OFF	ON	OFF	ON	-	-	-
	$-20 . .+150^{\circ} \mathrm{C}$	OFF	ON	OFF	ON	OFF	-	-	-		0... $+600^{\circ} \mathrm{C}$	OFF	ON	ON	OFF	ON	-	-	-
	$-10 . . .+15^{\circ} \mathrm{C}$	ON	ON	OFF	ON	OFF	-	-	-		$+10 \ldots+35^{\circ} \mathrm{C}$	ON	ON	ON	OFF	ON	-	-	-

Dimensions (mm)

Description

The temperature transmitter serie TTDM/TTSM measures the duct or screw-in temperature by sensor and converts the value into a Modbus 485 signal.

Technical specifications

Accuracy ${ }^{\circ} \mathrm{C}$
Power supply
Consumption
Electrical connection
Housing
Dimensions
Protection type
Protection class
Working range RH
Working temperature ${ }^{\circ} \mathrm{C}$
Standards
$\pm 0,2^{\circ} \mathrm{C}+\max 3 \%$ of FS
$12 . .34 \mathrm{~V}$ AC/DC
10... 20 mA

Screw terminals max. $1,5 \mathrm{~mm}^{2}$
PA6 15\% GF, RAL9010
See drawing
IP65
III
$0 . . .98 \% \mathrm{RH}$ in contaminant-free, non-condensing air
$-30 \ldots+70^{\circ} \mathrm{C}$
CE conformity, RoHS

Models	Version
TTDM	Duct
TTSM	Screw-in

Electrical wirings

Measurement source

Unit	ModBus source	Gain
Temperature ${ }^{\circ} \mathrm{C}$	20	10

TTDM / TTSM

DIP-switch 2

ON	Switch at: ON
OFF	

Dimension (mm)

Included in TTS versions

172

Description

The temperature/humidity transmitter serie TTHI measures the room temperature and humidity by capacitive sensors and converts the value into a linear output signal $0 . . .10 \mathrm{~V}$ DC or $4 \ldots 20 \mathrm{~mA}$.

Technical specifications

Measurement range RH
Accuracy RH
Measurement range ${ }^{\circ} \mathrm{C}$
Accuracy ${ }^{\circ} \mathrm{C}$
Power supply
Power consumption
Working resistance at $0 . . .10 \mathrm{~V}$
Working resistance at $4 \ldots 20 \mathrm{~mA}$
Speed of responce RH
Electrical connection
Housing
Dimensions
Protection type
Protection class
Working range RH
Working temperature ${ }^{\circ} \mathrm{C}$ Installation

Standards

Selectable by dip-switch
$\pm 2 \%$ RH ($20 \ldots 80 \% R H)+2 \%$ FS
4 different scale selectable by dip-switch
$\pm 0,3^{\circ} \mathrm{C}\left(5 \ldots 60^{\circ} \mathrm{C}\right)+1 \% \mathrm{FS}$
12... 34 V AC/DC
24... 44 mA
10... 100 kOhm
50... 500 Ohm

8 sec .
Screw terminals max. 1,5 mm²
ABS, RAL 9010
See drawing
IP30
III
0 ... $98 \% \mathrm{RH}$ in contaminant-free, non-condensing air
$0 . .+50^{\circ} \mathrm{C}$
Screw fastening
CE conformity, RoHS

Models	Temp. output	Humidity output	Version
TTHIV	0... 10 V DC	0... 10 V DC	
TTHIxV	Passive sensor ${ }^{(*)}$	$0 . . .10$ V DC	
TTHIVD	0... 10 V DC	0... 10 V DC	with display
TTHIxVD	Passive sensor ${ }^{(*)}$	0... 10 V DC	with display
TTHIC	4... 20 mA	4... 20 mA	
TTHIxC	Passive sensor ${ }^{(*)}$	4... 20 mA	
TTHICD	4... 20 mA	4... 20 mA	with display
TTHIxCD	Passive sensor ${ }^{(*)}$	4... 20 mA	con display

${ }^{(*)}$ Replace "x" with the number of desired passive sensor:

\mathbf{X}	Type of passive sensor
$\mathbf{1}$	Pt100 (DIN EN 60751 CI. B)
$\mathbf{2}$	Pt1000 (DIN EN 60751 CI. B)
$\mathbf{3}$	Ni1000 $($ TK6180 $)$
$\mathbf{5}$	NTC20k $(\pm 1 \%)$
$\mathbf{6}$	NTC10k $(\pm 1 \%)$ BETA 3435 K

Electrical wirings

Output 0... 10 V		Output 4... 20 mA	
PIN	Assignment	PIN	Assignment
1	Output temp.	1	-
2	Output humid.	2	-
3	-	3	Output temp.
4	-	4	Output humid.
7	+	7	+
8	GND	8	GND
12	passive sensor	12	passive sensor
13	passive sensor	13	passive sensor

Important: connections in parallel with 24 VAC to consider the phase to prevent short circuits. The device is designed to operate in a low voltage condition.
Note: The sensor is designed for a normal environment condition, other aggressive gases can ruin it.

Setting

Dimensions (mm)

Description

The temperature/humidity transmitter serie TTHO measures the outdoor temperature and humidity by a capacitive humidity sensor and converts the value into a linear output signal $0 \ldots 10 \mathrm{~V}$ DC o $4 \ldots 20 \mathrm{~mA}$. The humidity and temperature sensor is protected against contamination by a screw sinter filter.

Technical specifications

Measurement range RH
Accuracy RH
Measurement range ${ }^{\circ} \mathrm{C}$
Accuracy ${ }^{\circ} \mathrm{C}$
Power supply
Power consumption
Working resistance at $0 . . .10 \mathrm{~V}$ DC
Working resistance at $4 \ldots 20 \mathrm{~mA}$
Electrical connection
Housing
Dimensions
Protection type
Protection class
Working range RH
Working temperature ${ }^{\circ} \mathrm{C}$
Standards

Selectable

$\pm 2 \%$ RH ($20 \ldots 80 \%$ RH) $+2 \%$ FS
4 different scale selectable by dip-switch
$\pm 0,3^{\circ} \mathrm{C}\left(5 \ldots 60^{\circ} \mathrm{C}\right)+1,5 \% \mathrm{FS}$
12... 34 V AC/DC
24... 44 mA
10... 100 kOhm
50... 500 Ohm

Screw terminals max. $1,5 \mathrm{~mm}^{2}$
PA6 15\% GF, RAL9010
See drawing
IP65
III
$0 . . .98 \% \mathrm{RH}$ in contaminant-free, non-condensing air
$-30 . .+70^{\circ} \mathrm{C}$
CE conformity, RoHS

Models	Temp. output	Humidity output	Version
TTHOC	4... 20 mA	4... 20 mA	
TTHOxC	Passive sensor ${ }^{(*)}$	4... 20 mA	
TTHOCD	4... 20 mA	4... 20 mA	with display
TTHOXCD	Passive sensor ${ }^{(*)}$	4... 20 mA	with display
TTHOV	$0 . . .10 \mathrm{~V}$ DC	$0 . . .10$ V DC	
TTHOxV	Passive sensor ${ }^{(*)}$	$0 . .10$ V DC	
TTHOVD	0... 10 V DC	$0 . . .10$ V DC	with display
TTHOxVD	Passive sensor (*)	$0 . . .10$ V DC	with display

${ }^{(*)}$ Replace " x " with the number of desired passive sensor:

\mathbf{X}	Type of passive sensor
$\mathbf{1}$	Pt100 (DIN EN 60751 CI. B)
$\mathbf{2}$	Pt1000 (DIN EN 60751 CI. B)
$\mathbf{3}$	Ni1000 $($ TK6180 $)$
$\mathbf{5}$	NTC20k $(\pm 1 \%)$
$\mathbf{6}$	NTC10k $(\pm 1 \%)$ BETA 3435 K

Electrical wirings

Output 0... 10 V		Output $4 . . .20 \mathrm{~mA}$	
PIN	Assignment	PIN	Assignment
1	Output temp.	1	-
2	Output humid.	2	-
3	-	3	Output temp.
4	-	4	Output humid.
7	+	7	+
8	GND	8	GND
12	passive sensor	12	passive sensor
13	passive sensor	13	passive sensor

Important: connections in parallel with 24 VAC to consider the phase to prevent short circuits. The device is designed to operate in a low voltage condition.
Note: The sensor is designed for a normal environment condition, other aggressive gases can ruin it.

Setting

Dimensions (mm)

Description

The temperature/humidity transmitter serie TTHDM measures the outdoor temperature and humidity by a capacitive humidity sensor and converts the value into an RS485 output signal with ModBus RTU/ASCII protocol. The sensor is protected by a sintered filter.

Technical specifications

Measurement range RH
0... 100% RH

Accuracy RH
Accurracy ${ }^{\circ} \mathrm{C}$
Power supply
Power consumption
Electrical connection
Housing
Dimensions
Protection type
Protection class
Working range RH
Working temperature ${ }^{\circ} \mathrm{C}$
Standards
$\pm 2 \%$ RH $(20 \ldots 80 \% R H)+2 \%$ FS a $25^{\circ} \mathrm{C}$
$\pm 0,3^{\circ} \mathrm{C}\left(5 \ldots 60^{\circ} \mathrm{C}\right)+1,5 \% \mathrm{FS}$
12... 34 V AC/DC
10... 20 mA

Screw terminals max. $1,5 \mathrm{~mm}^{2}$
PA6 15\% GF, RAL 9010
See drawing
IP65
III
0 ... $98 \% \mathrm{RH}$ in contaminant-free, non-condensing air
$-30 \ldots+70^{\circ} \mathrm{C}$
CE conformity, RoHS

Models	Version
TTHOM	
TTHOMD	with display

Measurement source

Unit	ModBus source	Gain
Temperature ${ }^{\circ} \mathbf{C}$	20	10
Relative humidity \%u.r.	21	10
Absolute humidity $\mathbf{g} \mathbf{m}^{\mathbf{3}}$	22	10
Dewpoint ${ }^{\circ} \mathbf{C}$	23	10
Enthalpy J	24	10

Electrical wirings

	Setting	1	2	3	4	5	6	7	8
	Baudrate								
	9600	OFF	OFF						
	19200	OFF	ON						
	38400	ON	OFF						
	57600	ON	ON						
							Termination		
	nessuna								OFF
	120Ω								ON
	Parity								
	Even				OFF	OFF			
	Odd				OFF	ON			
	No parità				ON	OFF			
	No parità				ON	ON			
					Modality				
	RTU						OFF		
	ASCII						ON		
							$\begin{aligned} & \text { Bit } \\ & \text { stop } \end{aligned}$		
	1							OFF	
	2							ON	

TTHOM

DIP-switch 2

Address	1	2	34	45	6	78	8 Indirizo	12	23	45	56	78	8	Address	12	23	4	56	7	8	Indirizz	1	23	4	5	7	8	Address	1	2	4	5	6	7	Address	1	2	4	5	67	8
1							43							84							125							166							207						
2							44							85							126							167							208						
3							45							86							127							168							209						
4							46							87							128							169							210						
5							47							88							129							170							211						
6							48							89							130							171							212						
7							49							90							131							172							213						
8							50							91							132							173							214						
9							51							92							133							174							215						
10							52							93							134							175							216						
11							53							94							135							176							217						
12							54							95							136							177							218						
13							55							96							137							178							219						
14							56							97							138							179							220						
15							57							98							139							180							221						
16							58							99							140							181							222						
17							59							100							141							182							223						
18							60							101							142							183							224						
19							61							102							143							184							225						
20							62							103							144							185							226						
21							63							104							145							186							227						
22							64							105							146							187							228						
23							65							106							147							188							229						
24							66							107							148							189							230						
25							67							108							149							190							231						
26							68							109							150							191							232						
27							69							110							151							192							233						
28							70							111							152							193							234						
29							71							112							153							194							235						
30							72							113							154							195							236						
31							73							114							155							196							237						
32							74							115							156							197							238						
33							75							116							157							198							239						
34							76							117							158							199							240						
35							77							118							159							200							241						
36							78							119							160							201							242						
37							79							120							161							202							243						
38							80							121							162							203							244						
39							81							122							163							204							245						
40							82							123							164							205							246						
41							83							124							165							206							247						
42																																									

ON		Switch at: ON
OFF		

Dimensions (mm)

Description

The temperature/humidity transmitter serie TTHD measures the duct temperature and humidity by a capacitive sensor and converts the value into a linear output signal $0 \ldots 10 \mathrm{~V}$ DC or $4 \ldots 20 \mathrm{~mA}$.

Technical specifications

Measurement range RH
Accuracy RH
Measurement range ${ }^{\circ} \mathrm{C}$
Accurracy ${ }^{\circ} \mathrm{C}$
Speed of responce
Power supply
Power consumption
Working resistance at $0 . . .10 \mathrm{~V}$ DC
Working resistance at $4 \ldots 20 \mathrm{~mA}$
Electrical connection
Housing
Dimensions
Protection type
Protection class
Working range RH
Working temperature ${ }^{\circ} \mathrm{C}$
Installation
Standards

Selectable by dip-switch
$\pm 2 \%$ RH ($20 \ldots 80 \% \mathrm{RH}$) $+2 \%$ FS
4 different scale selectable by dip-switch
$\pm 0,3^{\circ} \mathrm{C}\left(5 \ldots 60^{\circ} \mathrm{C}\right)$
8 sec .
12... 34 V AC/DC
24... 44 mA
10... 100 kOhm
50... 500 Ohm

Screw terminals max. $1,5 \mathrm{~mm}^{2}$
PA6 15\% GF, RAL 9010
See drawing
IP65
II
$0 . . .98 \% \mathrm{RH}$ in contaminant-free, non-condensing air $-30 \ldots+70^{\circ} \mathrm{C}$
Mounting flange (included)
CE conformity, RoHS

Models	Temp. output	Humidity output	Version
TTHDV	0... 10 V DC	0... 10 V DC	
TTHDVD	0... 10 V DC	$0 . . .10$ V DC	with display
TTHDxV	Passive sensor ${ }^{(*)}$	$0 . . .10$ V DC	
TTHDxVD	Passive sensor ${ }^{(*)}$	0... 10 V DC	with display
TTHDC	4... 20 mA	4... 20 mA	
TTHDCD	4... 20 mA	4... 20 mA	with display
TTHDxC	Passive sensor ${ }^{(*)}$	4... 20 mA	
TTHDxCD	Passive sensor ${ }^{(*)}$	4... 20 mA	with display

${ }^{(*)}$ Replace " x " with the number of desired passive sensor:

\mathbf{X}	Type of passive sensor
$\mathbf{1}$	Pt100 (DIN EN 60751 CI. B)
$\mathbf{2}$	Pt1000 (DIN EN 60751 CI. B)
$\mathbf{3}$	Ni1000 $($ TK6180 $)$
$\mathbf{5}$	NTC20k $(\pm 1 \%)$
$\mathbf{6}$	NTC10k $(\pm 1 \%)$ BETA 3435 K

Electrical wirings

Output 0... 10 V		Output 4... 20 mA	
PIN	Assignment	PIN	Assignment
1	Output temp.	1	-
2	Output humid.	2	-
3	-	3	Output temp.
4	-	4	Output humid.
7	+	7	+
8	GND	8	GND
12	passive sensor	12	passive sensor
13	passive sensor	13	passive sensor

Important: connections in parallel with 24 VAC to consider the phase to prevent short circuits. The device is designed to operate in a low voltage condition.
Note: The sensor is designed for a normal environment condition, other aggressive gases can ruin it.

Setting

	Range	1	2		Range	3	4	5	6
	$-30 \ldots+70^{\circ} \mathrm{C}$	OFF	OFF		Relative humidity				
	$-20 \ldots+80^{\circ} \mathrm{C}$	ON	OFF		0...100\%	OFF	OFF	OFF	OFF
	$0 \ldots+100^{\circ} \mathrm{C}$	OFF	ON		Absolute humidity				
	$0 . . .+50^{\circ} \mathrm{C}$	ON	ON		$0 \mathrm{~g} / \mathrm{m}^{3} \ldots . .30 \mathrm{~g} / \mathrm{m}^{3}$	ON	OFF	OFF	OFF
					$0 \mathrm{~g} / \mathrm{m}^{3} \ldots . .50 \mathrm{~g} / \mathrm{m}^{3}$	ON	ON	OFF	OFF
					$0 \mathrm{~g} / \mathrm{m}^{3} \ldots 80 \mathrm{~g} / \mathrm{m}^{3}$	ON	ON	ON	OFF
					Mix ratio				
					$0 \mathrm{~g} / \mathrm{kg} \ldots . .30 \mathrm{~g} / \mathrm{kg}$	OFF	OFF	OFF	ON
					$0 \mathrm{~g} / \mathrm{kg} \ldots . .50 \mathrm{~g} / \mathrm{kg}$	OFF	OFF	ON	ON
					$0 \mathrm{~g} / \mathrm{kg} \ldots . .80 \mathrm{~g} / \mathrm{kg}$	OFF	ON	ON	ON
					Dew point				
					$0 . . .+50^{\circ} \mathrm{C}$	OFF	ON	ON	OFF
					$-50 \ldots+100^{\circ} \mathrm{C}$	ON	OFF	OFF	ON
					$-20 \ldots+80^{\circ} \mathrm{C}$	OFF	ON	OFF	ON
					Enthalpy				
					$0 \mathrm{kj} / \mathrm{kg}$... $85 \mathrm{kj} / \mathrm{kg}$	ON	ON	ON	ON

Dimensions (mm)

TTHDM

Description

The temperature/humidity transmitter serie TTHDM measures the duct temperature and humidity by a capacitive humidity sensor and converts the value into an RS485 output signal with ModBus RTU/ASCII protocol. The sensor is protected by a sintered filter.

Technical specifications

Measurement range RH
0... 100% RH

Accuracy RH
Accurracy ${ }^{\circ} \mathrm{C}$
Power supply
Power consumption
Electrical connection
Housing
Dimensions
Protection type
Protection class
Working range RH
Working temperature ${ }^{\circ} \mathrm{C}$ Installation

Standards
$\pm 2 \%$ RH $(20 \ldots 80 \% R H)+2 \%$ FS a $25^{\circ} \mathrm{C}$
$\pm 0,3^{\circ} \mathrm{C}\left(5 \ldots 60^{\circ} \mathrm{C}\right)+1,5 \% \mathrm{FS}$
12... 34 V AC/DC
10... 20 mA

Screw terminals max. $1,5 \mathrm{~mm}^{2}$
PA6, RAL 9010
See drawing
IP65
III
$0 . . .98 \% \mathrm{RH}$ in contaminant-free, non-condensing air
$-30 \ldots+70^{\circ} \mathrm{C}$
Mounting flange (included)
CE conformity, RoHS

Models	Version
TTHDM	
TTHDMD	with display

Measurement source

Unit	ModBus source	Gain
Temperature ${ }^{\circ} \mathrm{C}$	20	10
Relative humidity \%u.r.	21	10
Absolute humidity $\mathbf{~ g / m}{ }^{\mathbf{3}}$	22	10
Dewpoint ${ }^{\circ} \mathrm{C}$	23	10
Enthalpy J	24	10

	Setting	1	2	3	4	5	6	7	8
	Baudrate								
	9600	OFF	OFF						
	19200	OFF	ON						
	38400	ON	OFF						
	57600	ON	ON						
								Term	ation
	nessuna								OFF
	120Ω								ON
	Parity								
	Even				OFF	OFF			
	Odd				OFF	ON			
	No parità				ON	OFF			
	No parità				ON	ON			
					Modality				
	RTU						OFF		
	ASCII						ON		
								$\begin{aligned} & \text { Bit } \\ & \text { stop } \end{aligned}$	
	1							OFF	
	2							ON	

DIP-switch 2

ON	Switch at: ON
OFF	

- Dimensions (mm)

Description

The $\mathrm{SAC} \mathrm{CO}_{2}$ sensor measures air quality through the presence of carbon dioxide in air ducts in the range between $0 \ldots 2000$ or $0 . . .5000 \mathrm{ppm}$. The measurement of CO_{2} concentration happens through a NDIR sensor that operates on an infrared basis and which compensates the presence of any impurity. The product can be provided with humidity or humidity/temperature sensor.
Output 0 ... 10 V DC or 4 ... 20 mA outputs.

Technical specifications

Measurement range CO_{2}
Accuracy CO_{2}

Accuracy temperature (*)
Accuracy humidity (*)
Power supply
Power consumption
Sensor setting up time
Working resistance at $0 . . .10 \mathrm{~V}$ DC
Working resistance at $4 \ldots 20 \mathrm{~mA}$
CO2 sensitive element
Sensible element
Electrical connection
Protection type
Housing
Working range RH
Working temperature ${ }^{\circ} \mathrm{C}$
Standards
0... 2000 / 0... 5000 ppm
$\pm 60 \mathrm{ppm}(0 \ldots 2000 \mathrm{ppm}) \pm 2 \%$ FS
$\pm 150 \mathrm{ppm}(0 \ldots 5000 \mathrm{ppm}) \pm 2 \% \mathrm{FS}$
$\pm 0,3 \mathrm{~K}\left(5 \ldots 60^{\circ} \mathrm{C}\right)+1 \% \mathrm{FS}$
$25^{\circ} \mathrm{C} \pm 2 \% \mathrm{RH}(20 \ldots 80 \% \mathrm{RH})+2 \% \mathrm{FS}$
12(20)... 34 V AC/DC
40... 100 mA

60 min .
10... 100 kOhm
50... 500 Ohm

NDIR self adjusting
Self-calibrating NDIR
Screw terminal for cables $1,5 \mathrm{~mm}^{2}$ IP 30
ABS RAL9010
$0 . . .98 \% \mathrm{RH}$ in aria pulita e non condensata
$0 . .+50^{\circ} \mathrm{C}$
Conformità $\mathrm{CE}, \mathrm{RoHs}$

(*) See models hereafter.

Model	Temperature	Humidity	Output
SACV	-	-	$0 \ldots 10 \mathrm{~V} \mathrm{DC}$
SACTV	\bullet	-	$0 \ldots 10 \mathrm{~V} \mathrm{DC}$
SACTHV	\bullet	-	$0 \ldots 10 \mathrm{VDC}$
SACC	-	-	$4 \ldots 20 \mathrm{~mA}$
SACTC	\bullet	-	$4 \ldots 20 \mathrm{~mA}$
SACHC	-	\bullet	$4 \ldots 20 \mathrm{~mA}$

Optional: Suffix D version with display
${ }^{(*)}$ Replace " X " with the number of selected passive sensor:

"X"	Type of passive sensor
$\mathbf{1}$	Pt100 (DIN EN 60751 CI. B)
$\mathbf{3}$	Ni1000 (TK6180)
$\mathbf{5}$	NTC20k $(\pm 1 \%)$
$\mathbf{6}$	NTC10k $(\pm 1 \%)$ BETA 3435 K

Electrical wirings

Dip-switch setting

Autocalibration CO_{2} sensor: The sensor must be mounted with the ventilation slots against the flow direction. The screw connector shall be installed in the direction of the ventilation slots.
The sensor shall be exposed to fresh air at least once a day, otherwise it will give incorrect readings on long term.
The sensor requires 15 days of calibration to be adapted to the real values.

Dimension (mm)

Description

The air quality sensor serie SAV for mixed gases (VOC) measures the air quality from $0 . . .2000 \mathrm{ppm}$ referring to the calibration gas. The sensors with provided by linear output signal $0 \ldots 10 \mathrm{~V}$ DC or $4 \ldots 20 \mathrm{~mA}$. Optional a relay SPTD.

Technical specifications

Measurement range VOC
0... 2000 ppm

Tolerance $\pm 2 \%$ FS
Measurement range ${ }^{\circ} \mathrm{C}$ (optional)
see configuration
Accuracy ${ }^{\circ} \mathrm{C} \quad \pm 0,3^{\circ} \mathrm{C}\left(5 \ldots . .60^{\circ} \mathrm{C}\right)+2,5 \%$ FS
Measurement range RH (optional) $0 . . .100 \%$ RH
Accuracy RH $\pm 2 \%$ RH $(20 \ldots 80 \% R H)+2 \%$ FS
Power supply $12 \ldots 34 \mathrm{~V} \mathrm{AC/DC}$ (20... $34 \mathrm{~V} \mathrm{AC/DC}$ with relay)
Calibration (corresponds) Good air approx $1 \mathrm{Vdc} \ldots 4 \mathrm{~mA}=250 \mathrm{ppm} \mathrm{CO}{ }_{2}$ equivalent
$5 \mathrm{Vdc} \ldots 12 \mathrm{~mA}=1175 \mathrm{ppm} \mathrm{CO} 2$ equivalent
$10 \mathrm{Vdc} \ldots 20 \mathrm{~mA}=2000 \mathrm{ppm} \mathrm{CO} 2$ equivalent
40... 100 mA

60 min
10... 100 kOhm
50... 500 Ohm

SPTD potential free. Changing at 800 ppm
Max $24 \mathrm{~V}, 1$ A
Screw terminal for cables $1,5 \mathrm{~mm}^{2}$
ABS (plastic) colour white RAL9010
approx. 70 g
IP30
0...98\% RH in contaminant-free, non-condensing air
$0 . . .+50^{\circ} \mathrm{C}$
CE conformity, RoHS

Models(*)	Temperature	Humidity	Output
SAVV	-	-	$0 \ldots 10 \mathrm{~V} \mathrm{DC}$
SAVTV	\bullet	-	$0 \ldots 10 \mathrm{~V} \mathrm{DC}$
SAVTHV	-	-	$0 \ldots 10 \mathrm{~V} \mathrm{DC}$
SAVC	-	-	$4 \ldots 20 \mathrm{~mA}$
SAVTC	-	-	$4 \ldots 20 \mathrm{~mA}$
SAVHC	-	-	$4 \ldots 20 \mathrm{~mA}$

(*) Add „R" suffix for Relay version.
Electrical wirings

Output 0... 10 Vdc				Output 4... 20 mA			
PIN	VOC	VOC/T	VOC/T/H	PIN	VOC	VOC/T	VOC/H
1	VOC	temp	temp	1	-	-	-
2	-	VOC	humidity	2	-	-	-
3	-	-	VOC	3	VOC	temp	humidity
4	-	-	-	4	-	VOC	VOC
7				+			
8				GND			
9				elay			
10				lay C			
11				elay			
12			(pas	ive s			
13			(pas	ive s			
S3				larity			

Dip-switch setting

WARNING: At the sensor is needed warming up at powering, therefore it takes about 60 minutes before having a signal. In this phase, the sensor must be placed in the fresh air to take it as a reference. If you remove the power supply voltage it is necessary to wait 60 minutes. Generally the sensor should be placed into fresh air at least once a day. This procedure prevents a long-term drift.

Measuring behaviour

Dimensions (mm)

Description

The SDC CO2 sensor measures air quality through the presence of carbon dioxide in air ducts in the range between 0... $2000 \mathrm{ppm} /$ $0 . . .5000 \mathrm{ppm}$. The measurement of CO2 concentration happens through a NDIR sensor that operates on an infrared basis and which compensates the presence of any impurity. The product can be provided with humidity or humidity/temperature sensor.
Output 0 ... 10 Vdc or 4 ... 20 mA outputs.

Technical specifications

CO2 measuring range
Accuracy
Measuring range ${ }^{\circ} \mathrm{C}$ (optional)
Accuracy ${ }^{\circ} \mathrm{C}$
Measurement range RH (optional)
RH accuracy
Supply voltage
Power consumption
Resistive load at 0 ... 10 V DC
Resistive load at 4 ... 20 mA
CO2 sensitive element
Electrical connections
Sensor setting up time
Cable gland
Protection
Material
Working range RH
Working range ${ }^{\circ} \mathrm{C}$
Installation
Standards

0 ... 2000 ppm / 0 ... 5000 ppm
$\pm 60 \mathrm{ppm}(0 \ldots 2000 \mathrm{ppm}) \pm 2 \% \mathrm{FS} / \pm 150 \mathrm{ppm}(0 \ldots 5000 \mathrm{ppm}) \pm 2 \% \mathrm{FS}$
See configuration
$\pm 0.3^{\circ} \mathrm{C}\left(5 \ldots 60^{\circ} \mathrm{C}\right)+1 \% \mathrm{FS}$
See configuration
$25^{\circ} \mathrm{C} \pm 2 \% \mathrm{RH}(20 \ldots 80 \% \mathrm{RH})+2 \% \mathrm{FS}$
12 ... 34 V AC / DC
40 ... 100 mA
10 ... 100 kOhm
50 ... 500 Ohm
Self-calibrating NDIR
Screw terminals for cables max. $1.5 \mathrm{~mm}^{2}$
60 min.
M16 x 1.5 for cables $ø 4 \ldots 10 \mathrm{~mm}$
IP65
PA6
0 ... $98 \% \mathrm{RH}$ in clean, non-condensed air
$0 \ldots+50^{\circ} \mathrm{C}$
PVC mounting flange (included)
CE, RoHs compliance

Models	Temperature	Humidity	Output
SDCV	-	-	$0 \ldots 10 \mathrm{~V} \mathrm{DC}$
SDCT $(\mathbf{x}) \mathbf{V}^{*}$	-	-	$0 \ldots 10 \mathrm{~V} \mathrm{DC}$
SDCTH $(\mathbf{x}) \mathbf{V}^{*}$	-	\bullet	$0 \ldots 10 \mathrm{~V} \mathrm{DC}$
SDCC	-	-	$4 \ldots 20 \mathrm{~mA}$
SDCTC	\bullet	-	$4 \ldots 20 \mathrm{~mA}$
SDCHC	-	\bullet	$4 \ldots 20 \mathrm{~mA}$

Optional: Suffix D version with display
${ }^{(*)}$ Replace "X" with the number of selected passive sensor:

"X"	Type of passive sensor
$\mathbf{1}$	Pt100 (DIN EN 60751 CI. B)
$\mathbf{3}$	Ni1000 (TK6180)
$\mathbf{5}$	NTC20k $(\pm 1 \%)$
$\mathbf{6}$	NTC10k $(\pm 1 \%)$ BETA 3435 K

The sensor must comply with the ventilation slots against the flow direction the measured medium are attached. An external indication of the location of ventilation slits offers inappropriate gland, which always towards the vents shows.
Generally the sensor should be supplied at least once per day with fresh air, as he regularly calibrates itself to this. This procedure prevents a longterm drift whereby the sensor is very stable.
The sensor requires 15 days of calibration time, during which time it adapts to the real values.

Electrical wirings

Dip-switch setting

The automatic self-calibration (ASC) algorithm independently generates a reference value by analyzing the measured CO_{2} concentration over a certain period of time (approx. 7 days). This reference value is used to update the calibration curve.
For correct use, it is necessary that the CO_{2} sensor is regulary exposed to fresh air $=400 \mathrm{ppm}$ at least 1 time per day for at least 30 minutes. The Co_{2} sensor must be operated in continuous measurement mode during (ASC), switching it off will delay (ASC).
To exclude gross calibration errors, the reference value is only accepted when the values are found to be plausible by the internal plausibility check of the sensor.

Dimensions (mm) and installation

Description

The SDCM CO ${ }_{2}$ sensor measures air quality through the presence of carbon dioxide in air ducts in the range between 0 and 2000 ppm. The measurement of CO_{2} concentration happens through a NDIR sensor that operates on an infrared basis and which compensates the presence of any impurity. The product is provided with ModBus 485 output.

Technical specifications

Measurement range CO_{2}
Accuracy CO_{2}
Accuracy temperature (*)
Accuracy humidity (*)
Power supply
Consumption
Sensible element
Output
Electrical connection
Protection type
Working range RH
Working temperature ${ }^{\circ} \mathrm{C}$
Storage temperature
Installation
Standards
0... 2000 ppm
$< \pm 60 \mathrm{ppm}+2 \% \mathrm{FS}$ (at $25^{\circ} \mathrm{C}$ and 1013 mbar) $\pm 0,3^{\circ} \mathrm{C}\left(5 \ldots 60^{\circ} \mathrm{C}\right)+1 \% \mathrm{FS}$
$\pm 2 \%$ RH ($20 \ldots 80 \% \mathrm{RH}$) $+2 \%$ FS
12... 24 V AC/DC
max. 9 mA
NDIR self adjusting
ModBus RS485 (ASCII/RTU)

Screw terminal for cables $1,5 \mathrm{~mm}^{2}$
IP65
10... 95% RH in contaminant-free, non-condensing air
$-20 \ldots+50^{\circ} \mathrm{C}$
$-20 \ldots+50^{\circ} \mathrm{C}$
Mounting flange (included)
CE conformity, RoHS

Model	Temperature	Humidity
SDCM	-	-
SDCTM	\bullet	-
SDCTHM	\bullet	\bullet

Measurement source

Unit	ModBus source	Gain
ppm CO	10	10
Temperature ${ }^{\circ} \mathbf{C}$	20	10
Relative humidity \%u.r.	21	10
Absolute humidity $\mathbf{~ g / \mathbf { m } ^ { \mathbf { 3 } }}$	22	10
Dewpoint ${ }^{\circ} \mathbf{C}$	23	10
Enthalpy J	24	10

Electrical wirings

SDCM

DIP-switch 2

ON	Switch at: ON
OFF	

Installation

Description

The SDV sensor measures air quality in air ducts in the range between $0 . . .2000 \mathrm{ppm}$. The product can be provided with humidity or humidity/temperature sensor. Output 0 ... 10 V DC or $4 \ldots 20 \mathrm{~mA}$ outputs.

Technical specifications

Measurement range VOC
0... 2000 ppm

Measurement range ${ }^{\circ} \mathrm{C}$ (optional) see configuration

ptional) Accuracy temperature (*) $\pm 0,3^{\circ} \mathrm{C}\left(5 \ldots 60^{\circ} \mathrm{C}\right)+1 \% \mathrm{FS}$

Measurement range RH (optional) see configuration
optional) Accuracy humidity (*)
Power supply
Power consumption
$\pm 2 \%$ RH ($20 \ldots . .80 \% \mathrm{RH}$) $+2 \%$ FS
12... 34 V AC/DC
40... 100 mA
s) Working resistance at $0 . . .10 \mathrm{~V}$ DC
10... 100 kOhm

Working resistance at $4 \ldots 20 \mathrm{~mA}$
50... 500 Ohm

Calibration (corresponds) Good air approx $1 \mathrm{Vdc} \ldots 4 \mathrm{~mA}=250 \mathrm{ppm} \mathrm{CO}{ }_{2}$ equivalent
$5 \mathrm{Vdc} \ldots 12 \mathrm{~mA}=1175 \mathrm{ppm} \mathrm{CO} 2$ equivalent
$10 \mathrm{Vdc} \ldots 20 \mathrm{~mA}=2000 \mathrm{ppm} \mathrm{CO} 2$ equivalent
Screw terminal for cables $1,5 \mathrm{~mm}^{2}$
IP65
$0 . .98 \% \mathrm{RH}$ in contaminant-free, non-condensing air
$0 . .+50^{\circ} \mathrm{C}$
Mounting flange (included)
CE conformity, RoHS
(*) See models hereafter.

Models	Temperature	Humidity	Output
SDVV	-	-	$0 \ldots 10 \mathrm{~V} \mathrm{DC}$
SDVTV	\bullet	-	$0 \ldots 10 \mathrm{~V} \mathrm{DC}$
SDVTHV	\bullet	\bullet	$0 \ldots 10 \mathrm{~V} \mathrm{DC}$
SDVC	-	-	$4 \ldots . .20 \mathrm{~mA}$
SDVTC	\bullet	-	$4 \ldots 20 \mathrm{~mA}$
SDVHC	-	\bullet	$4 \ldots 2 \mathrm{~mA}$

Electrical wirings

Output 0... 10 Vdc				Output 4... 20 mA			
PIN	VOC	VOC/T	VOC/T/H	PIN	VOC	VOC/T	VOC/H
1	ppm	temp	temp	1	-	-	-
2	(VOC)	ppm	humidity	2	-	-	-
3	-	(VOC)	ppm	3	ppm	temp	humidity
4	-	-	(VOC)	4	(VOC)	ppm	ppm
5	passive potentiometer						
6	passive potentiometer						
7	V+						
8	GND						
9	relay NC						
10	relay C						
11	relay NO						
12	passive sensor						
13	passive sensor						
R1	temp. adjustment						

Dip-switch setting

Through the necessary heating-up phase it will take about 60 minutes until the sensor emits a signal. In this phase, the sensor should be exposed to the fresh air, since it takes this as a reference. If you take away the supply voltage short he needed again for 60 minutes. Generally the sensor should at least once per day to be supplied with fresh air, as he regularly calibrates itself to this. This procedure prevents a long-term drift whereby the sensor is very stable.

Measuring behaviour

Dimensions (mm) and installation

Description

The SDVM sensor measures air quality in air ducts in the range between $450 \ldots 2000 \mathrm{ppm}$. The product can be provided with humidity or humidity/temperature sensor. ModBus 485 output.

Technical specifications

Measurement range VOC
Accuracy temperature
Accuracy humidity
Power supply
Power consumption
Electrical connection
Protection type
Working range RH
Working temperature ${ }^{\circ} \mathrm{C}$
Installation
Standards
450... 2000 ppm
$\pm 0,3^{\circ} \mathrm{C}\left(5 \ldots 60^{\circ} \mathrm{C}\right)+1 \% \mathrm{FS}$
$\pm 2 \%$ RH $(20 \ldots 80 \% R H)+2 \%$ FS
12... 34 V AC/DC
40... 100 mA

Screw terminal for cables $1,5 \mathrm{~mm}^{2}$ IP65
$0 . . .98 \% \mathrm{RH}$ in contaminant-free, non-condensing
$0 \ldots+50^{\circ} \mathrm{C}$
Mounting flange (included)
CE conformity, RoHS

Models	Temperature	Humidity
SDVM	-	-
SDVTM	\bullet	-
SDVTHM	\bullet	\bullet

Measurement source

Unit	ModBus source	Gain
Temperature ${ }^{\circ} \mathbf{C}$	20	10
Relative humidity \%u.r.	21	10
Absolute humidity $\mathbf{~ g} \mathbf{/ m}^{\mathbf{3}}$	22	10
Dewpoint ${ }^{\circ} \mathbf{C}$	23	10
Enthalpy J	24	10
ppm VOC	30	10

Electrical wirings

SDVM

DIP-switch 2

ON		Switch at: ON
OFF		

Installation

Dimensions (mm)

194

Description

The relative pressure transmitter PTD series with ceramic measuring cell is used to measure relative pressures of non-aggressive media.
Possible fields of application are building automation, industrial, pneumatic and hydraulic sectors.
The standard series covers various measurement ranges (see schedule) with linear output signals $4 \ldots 20 \mathrm{~mA}$ or 0 ... 10 V DC.
The resistant stainless steel case is available with two connectors and has an IP65 protection class.

Technical specifications

Power supply

Output signal
Berst pressure
Linearity
Hysteresis
Working temperature
Thread
Electrical connection
Housing
Protection class EN 60529
Standards

Output $4 . . .20 \mathrm{~mA}: 24 \mathrm{~V}$ DC / Ourtput 0... 10 V 24 V AC/DC
0 ... 10 V DC or 4 ... 20 mA
x 2,5 FS
$\leq 1 \%$ of FS
$\leq 0,5 \%$ of FS
$0 \ldots 85^{\circ} \mathrm{C}$
G 1/2", G 1/4"
Connector DIN EN 175301-803-A
Stainless steel Aisi 303
IP65
CE, 2011/65/EU (RoHS II)

Code matrix

Configurable pressure range	$0 . .0,16 \mathrm{MPa}$ 0 ... $0,25 \mathrm{MPa}$ 0 ... $0,4 \mathrm{MPa}$ 0... 0,6 MPa 0... 1 MPa 0... 1,6 MPa 0... $2,5 \mathrm{MPa}$ 0... 4 MPa 0... 6 MPa $-0,1 \ldots 0 \mathrm{MPa}$ $-0,1 \ldots 0,06 \mathrm{MPa}$ $-0,1 \ldots 0,15 \mathrm{MPa}$ $-0,1 \ldots 0,3 \mathrm{MPa}$ $-0,1 \ldots 0,5 \mathrm{MPa}$ $-0,1 \ldots 0,9 \mathrm{MPa}$ $-0,1 \ldots 1,5 \mathrm{MPa}$ $-0 \ldots-0,1 \mathrm{MPa}$	(0... 1,6 bar) (0... 2,5 bar) (0... 4 bar) (0... 6 bar) (0... 10 bar) (0... 16 bar) (0... 25 bar) (0... 40 bar) (0... 60 bar) (-1... 0 bar) (-1... 0,6 bar) (-1... 1,5 bar) (-1... 3 bar) (-1... 5 bar) (-1... 9 bar) (-1... 15 bar) (-0... -1 bar)	PTD	$\begin{aligned} & 01 \\ & 02 \\ & 03 \\ & 04 \\ & 05 \\ & 06 \\ & 07 \\ & 08 \\ & 09 \\ & 10 \\ & 11 \\ & 12 \\ & 13 \\ & 14 \\ & 15 \end{aligned}$ 16 17		
Thread	$\begin{aligned} & \mathrm{G} 1 / 4^{\prime \prime} \\ & \mathrm{G} 1 / 2^{\prime \prime} \end{aligned}$					
Output signal	$0 . . .10 \mathrm{~V} D, 3$ wi 4... $20 \mathrm{~mA}, 2$ wire					V

Electrical wirings

Output 4...20 mA		Output 0...10 V	
Pin	Connection	Pin	Connection
$\mathbf{1}$	+ IN	1	+ IN
$\mathbf{2}$	OUT	2	GND
$\mathbf{3}$		3	+OUT
$\mathbf{4}$		4	

Dimensions (mm)

Description

The differential pressure transmitters of the PTR series are used to measure differential pressure, overpressure and vacuum. They provide one adjustable pressure range and one output signal.
Monitoring of gaseous, non-aggressive media. Possible usage areas are: Building automation, air conditioning systems and clean room monitoring, valve and flap control, filter, ventilator and blower monitoring, control of air flows.

Technical data

Supply voltage
Output signal
Load for 4 ... 20mA output
Max. current draw
Pressure medium
Linearity and hysteresis error
Working temperature
Storage temperature
Typical long-term stability
Repetition accuracy
Position dependence
Humidity
Response time, selectable
Process connection
Electrical connection
Mounting
Housing material
Housing dimensions
Weight
Cable conduit for protection cap
Protection class EN 60529
Conformity
Optional
18... $30 \mathrm{~V} \mathrm{AC/DC} \mathrm{(only} \mathrm{DC} \mathrm{for} \mathrm{2-wire} \mathrm{version)}$

0 ... 10 V or 4 ... 20 mA
20 ... 500 Ohm
$<40 \mathrm{~mA}$ (<21 mA for 2-wire version)
Air and non-aggressive gases
$\leq \pm 1 \%$ of FS
$-40 \ldots 50^{\circ} \mathrm{C}$
$-40 \ldots 70^{\circ} \mathrm{C}$
$\leq \pm 0,5 \%$ of $\pm 2,5 \%$ of $F S /$ year, depending on pressure range
$\leq \pm 0,2 \%$ of FS
$\leq \pm 0,02 \%$ of FS / g
0 ... $95 \% \mathrm{RH}$, non-condensing
0,1-1,0s
6 mm hose connection
Spring terminals for wires and leads up to $1,5 \mathrm{~mm}^{2}$
Screw mounting with serrated screws
ABS
ca. $\varnothing 66 \times 28 \mathrm{~mm}$
50 g
M12 $\times 1,5$ threaded connection, made of polyamide
IP54
EN 60770, EN 61326, 2011/65/EU (RoHS II)
UL, conforms to UL Std. 61010-1, conforms to CSA Std. C22.2 No. 61010-1

Model		Range	Overload capacity	Bursting pressure	Temperature error
PTR2..	$0 \ldots 100 \mathrm{~Pa}$	$(0 \ldots 1,0 \mathrm{mbar})$	60 kPa	100 kPa	$\leq \pm 2,5 \%$ of full range
PTR3..	$0 \ldots 250 \mathrm{~Pa}$	$(0 \ldots 2,5 \mathrm{mbar})$	60 kPa	100 kPa	$\leq \pm 2,5 \%$ of full range
PTR4..	$0 \ldots 500 \mathrm{~Pa}$	$(0 \ldots 5,0 \mathrm{mbar})$	60 kPa	100 kPa	$\leq \pm 2,5 \%$ of full range
PTR5..	$0 \ldots 1000 \mathrm{~Pa}$	$(0 \ldots 10 \mathrm{mbar})$	75 kPa	125 kPa	$\leq \pm 1,0 \%$ of full range
PTRM..	$0 \ldots 1,6 \mathrm{kPa}$	$(0 \ldots 16 \mathrm{mbar})$	85 kPa	135 kPa	$\leq \pm 1,0 \%$ of full range
PTR6..	$0 \ldots 2,5 \mathrm{kPa}$	$(0 \ldots 25 \mathrm{mbar})$	85 kPa	135 kPa	$\leq \pm 1,0 \%$ of full range
PTR7..	$0 \ldots 5 \mathrm{kPa}$	$(0 \ldots 50 \mathrm{mbar})$	85 kPa	135 kPa	$\leq \pm 1,0 \%$ of full range
PTR8..	$0 \ldots 10 \mathrm{kPa}$	$(0 \ldots 100 \mathrm{mbar})$	85 kPa	135 kPa	$\leq \pm 1,0 \%$ of full range
PTR9..	$0 \ldots 25 \mathrm{kPa}$	$(0 \ldots 250 \mathrm{mbar})$	135 kPa	275 kPa	$\leq \pm 1,0 \%$ of full range
PTRA..	$0 \ldots 50 \mathrm{kPa}$	$(0 \ldots 500 \mathrm{mbar})$	200 kPa	400 kPa	$\leq \pm 1,0 \%$ of full range
PTRB..	$0 \ldots 100 \mathrm{kPa}$	$(0 \ldots 1,0 \mathrm{bar})$	200 kPa	400 kPa	$\leq \pm 1,0 \%$ of full range
PTRF..	$0 \ldots 250 \mathrm{kPa}$	$(0 \ldots 2,5 \mathrm{bar})$	400 kPa	800 kPa	$\leq \pm 1,0 \%$ of full range

197

Adjustable pressure range: The end of the pressure range can be reduced to 50% of its factory set full scale value simply by the use of a push-button.
Output signal: 0 ... 10 V or 4 ... 20 mA . Other signals on request.
Configurable response time: The response time of the output signal can be configured using a jumper. If the jumper is in place the response time is slow (factory setting), which is useful for suppressing brief pressure peaks. If the application requires a fast response time the jumper must be removed.
Easy offset calibration: The output signal can be calibrated to zero by pressing the push-button (pressure transmitter must be depressurised).
Volume flow measurement (optional): The shape of the output signal can be switched from linear to square root using a jumper in order to measure the volume flow via a differential pressure.
Reset: The transmitter can be reset to its factory setting, just by pressing the push-button for 10 sec.
Measuring method: Piezoresistive pressure transducer
Mounting position: Can be mounted in any position. The self-compensating piezoresistive pressure transducer eliminates any possible mounting error.

Order matrix

Configurable pressure ranges	0... 100 Pa	(0... 1,0 mbar)	PTR	2 3 4 5 M 6 7 8	
	0... 250 Pa	(0... 2,5 mbar)			
	0... 500 Pa	(0... 5,0 mbar)			
	0... 1000 Pa	(0... 10 mbar)			
	0... $1,6 \mathrm{kPa}$	(0... 16 mbar)			
	0... $2,5 \mathrm{kPa}$	(0... 25 mbar)			
	$0 . . .5 \mathrm{kPa}$	(0... 50 mbar)			
	0... 10 kPa	(0... 100 mbar)			
	0... 25 kPa	(0... 250 mbar)			
	0... 50 kPa	(0... 500 mbar)			
	0... 100 kPa	(0... 1,0 bar)			
	0... 250 kPa	(0... 2,5 bar)			
Output signal	$0 . . .10 \mathrm{~V}, 3$-wire, linear				7
	4... $20 \mathrm{~mA}, 3$-wire, linear				D
	$0 \ldots 10 \mathrm{~V}, 3$-wire, square rooted				L
	$4 . .20 \mathrm{~mA}, 3$-wire, square rooted				P
	4... $20 \mathrm{~mA}, 2-$ wire, linear				2
	4... $20 \mathrm{~mA}, 2$-wire, square rooted				U
Optional	Suffix UL for	/ CSA approval			

Electrical wiring

2-wire version

Dimensions (mm)

Description

Single and dual differential pressure transmitters of the PTS series are used to measure differential pressure, overpressure and vacuum. They provide eight adjustable pressure ranges, two output signals, Modbus and calibrated and temperature compensated measurements. Monitoring of gaseous, non-aggressive media. Possible usage areas are: Building automation, air conditioning systems and clean room monitoring, valve and flap control, filter, ventilator and blower monitoring, control of air flows.

Technical data

Supply voltage
Power consumption
Output signal
Current output
Voltage output
Relay output
Sensing element
Pressure medium
Temperature compensation
Accuracy
Working temperature
Storage temperature
Pressure connection
Electrical connection
Mounting
Housing dimensions
Weight
Cable conduit for protection cap
Protection class EN 60529
Standards

24 VAC or $15 . . .35$ VDC
< 1,5 W
0 ... 10 VDC, $2 \ldots . .10$ VDC, $0 . . . ~ 5$ VDC, $1 \ldots . .5$ VDC, $4 . . .20 \mathrm{~mA}$
4... 20 mA , maximum 500 Ohm

0 ... 10 VDC or $0 . . .5$ VDC, minimum 1000 Ohm
Max. rating 1A at 230 VAC
Piezoresistive silicon ceramic sensor
Air and non-aggressive gases
$-40 \ldots 110^{\circ} \mathrm{C}$
$\pm 0,25 \%$ of FS
$-25 . .70^{\circ} \mathrm{C}$
$-30 \ldots 85^{\circ} \mathrm{C}$
6 mm hose connection
Spring terminals for wires and leads up to $1,5 \mathrm{~mm}^{2}$
Screw mounting with serrated screws
$151 \times 85 \times 50 \mathrm{~mm}$
$168 . . .205 \mathrm{~g}$

M16

IP54
CE conformity, RoHS

Order matrix

model		Range 1		Range 2		Output 1		Output 2	Option	
PTS	0 1 2 3 4 5 6 7	$\begin{gathered} n o \\ \pm 250 \mathrm{~Pa} \\ 1.000 \mathrm{~Pa} \\ \pm 1.000 \mathrm{~Pa} \\ 2.500 \mathrm{~Pa} \\ 10.000 \mathrm{~Pa} \\ 6.000 \mathrm{~Pa} \\ \pm 6.000 \mathrm{~Pa} \end{gathered}$	0 1 2 3 4 5 6 7	$\begin{gathered} n o \\ \pm 250 \mathrm{~Pa} \\ 1.000 \mathrm{~Pa} \\ \pm 1.000 \mathrm{~Pa} \\ 2.500 \mathrm{~Pa} \\ 10.000 \mathrm{~Pa} \\ 6.000 \mathrm{~Pa} \\ \pm 6.000 \mathrm{~Pa} \end{gathered}$	0 1 2 3 4 5	$$	0 1 2 3 4 5	$$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{D} \\ & \mathrm{R} \end{aligned}$	Modbus Display Relay*

*It is recommandable to order the relay version with display option.
Each range has its own 8 sub-ranges that can be selected by DIP switch, see schedule hereafter.

	Pa	nges－Pa
0	no	no
1	± 250	$-25 \ldots+25,-50 \ldots+50,-100 \ldots+100,-250 \ldots+250,0 \ldots 25,0 \ldots 50,0 \ldots 100,0 \ldots 250$
2	1.000	$0 \ldots 100,0 \ldots 200,0 \ldots 300,0 \ldots 400,0 \ldots 500,0 \ldots 600,0 \ldots 750,0 \ldots 1.000$
3	± 1.000	$-250 \ldots+250,-500 \ldots+500,-750 \ldots+750,-1.000 \ldots+1.000,0 \ldots 250,0 \ldots 500,0 \ldots 750,0 \ldots 1.000$
4	2.500	$0 \ldots 100,0 \ldots .250,0 \ldots 500,0 \ldots 750,0 \ldots 1.000,0 \ldots 1.500,0 \ldots 2.000,0 . .2 .500$
5	10.000	$0 \ldots 1 \mathrm{k}, 0 \ldots 2 \mathrm{k}, 0 \ldots 3 \mathrm{l}, 0 \ldots 4 \mathrm{k}, 0 \ldots 5 \mathrm{k}, 0 \ldots 6 \mathrm{k}, 0 \ldots .7,5 \mathrm{k}, 0 \ldots 10 \mathrm{k}$
6	6.000	0．．．500，0．．．750，0．．．1．000，0．．．2．000，0．．．3．000，0．．4．000，0．．．5．000，0．．．6．000
7	± 6.000	－1k．．．$+1 \mathrm{k},-2 k \ldots+2 k,-3 k \ldots+3 k,-6 k \ldots+6 k, 0 \ldots 1 k, 0 \ldots 2 k, 0 \ldots 3 k, 0 \ldots 6 k$

DIP Switch

1．SW1，channel \＃1，2，3 selects port 1 sub－ranges
2．SW1，channel \＃4 selects reponse time

Sub－ranges

DIP switch 1 and DIP switch 2 have the same subscales selectable from the table．

SW1／2	$\pm 250 \mathrm{~Pa}$	1.000 Pa	$\pm 1.000 \mathrm{~Pa}$	2．500 Pa	6．000 Pa	$\pm 6.000 \mathrm{~Pa}$	10 KPa
（0x）	$-25 . . .25$	0．．． 100	－250．．． 250	0．．． 100	0．．． 500	－1．000．．．1．000	$0 . . .1 \mathrm{KPa}$
（	－50．．． 50	0．．． 200	－500．．． 500	0．．． 250	0．．． 750	－2．000．．．2．000	$0 \ldots 2 \mathrm{KPa}$
	－100．．． 100	0．．． 300	－750．．． 750	0．．． 500	0．．．1．000	－3．000．．．3．000	$0 . . .3 \mathrm{KPa}$
近	－250．．． 250	0．．． 400	－1．000．．．1．000	0．．． 750	0．．．2．000	－6．000．．．6．000	$0 . . .4 \mathrm{KPa}$
隹	0．．． 25	0．．． 500	0．．． 250	0．．1．000	0．．．3．000	0．．．1．000	$0 . .5 \mathrm{KPa}$
¢	0．．． 50	0．．． 600	0．．． 500	0．．．1．500	0．．．4．000	0．．．2．000	$0 . . .6 \mathrm{KPa}$
	0．．． 100	0．．． 750	0．．． 750	0．．．2．000	0．．．5．000	0．．．3．000	$0 \ldots 7.5 \mathrm{KPa}$
边	0．．． 250	0．．．1．000	0．．．1．000	0．．．2．500	0．．．6．000	0．．．6．000	0．．． 10 KPa

Response time

SW1	Response
กำ	FAST／ 1 sec．
	SLOW／ 4 sec．

In both cases，FAST or SLOW，
－output is mean of latest 10 measurements．
Output is updated：
－every 0.1 second in FAST mode
－every 0.4 second in SLOW mode

Transmitter hardware

SET1	Main Screen Menu Mode	press min. 5 sec. for entering MENU increase the parameter or next selection
SET2	Menu Mode	decrease the parameter or previous selection
ZERO	Main Screen Menu Mode	press min. 5 sec . for setting ZERO next parameter and finally exit
LED	Working Modbus	blinks periodically blinks for each Modbus transmitting
DISPLAY		custom dot matrix display, please check page 6 for more information
COM	COM 1 COM 2 COM 3	service port service port service port
SW 1	\# 1-2-3 \# 4	sub-range selection for DP 1, see page 3 response time selection, see page 3
X1	11 24V	$14 \ldots 35 \mathrm{VDC}$ or $24 \mathrm{VAC}(\pm \% 5,50-60 \mathrm{~Hz})$
Terminals	12 GND 13 AO1 14 AO2 15 modbus-A 16 modbus-B	ground for power and reference for outputs analog output 1 analog output 2 modbus communication positive pair modbus communication negative pair
X2	21-22	relay 1, dry contact, max. rating 1A @ 220 VAC

Relay 1 normally open acts always for DP1

Electrical wiring

Relay contact rating is max. 1 A at 230 VAC We kindly advise using 24 V for avoiding high voltage harmonics and external power relay for bigger loads Please use shielded and twisted paired cables for Modbus connections

Display

zeroing
counts down for 5 sec． keep pressing ZERO button
zeroing is OK

entering MENU counts down for 5 sec ． keep pressing SET1 button
entered to MENU

	吅
	喵

min．point，scale for DP
max．point，scale for DP

response time
 FAST response， 1 sec ．

SLOW response， 4 sec．

品品	modbus
品㗊袁吅，	baudrate
	9.600
	19.200
	38.400
	57.600
	115.200

Menu

1. For entering MENU press SET1 button min. 5 sec .
2. ZERO button calls the next parameter
3. SET1 button increases the value or choses the next selection
4. SET2 button decreases the value or choses the previous selection
5. All parameters are listed below, due to options you may not see some of them
6. Any changed parameter or value is set while exiting Menu

Main Screen >> r1L >> r1H >> r1A >> EXIT

Actions for Relay and Buzzer

Action	under LOW	between LOW $\mathbf{-}$ HIGH	over HIGH
0	Open	Open	Open
1	Open	Closed	Open
2	Closed	Open	Closed
3	Open	hysterisis	Closed
4	Closed	hysterisis	Open

Modbus 485 protocol

Use Function 3 for Reading and Function 6 for Writing Holding Registers.
Register Table starts from Base 1. Default Settings: Modbus ID:1, 9600, 8bit, None, 1.

Register	R/W	min.	max.	Description
1	R \& W	1	254	Modbus Address
2	R \& W	0	4	Baudrate, 0: 9.600, 1: 19.200
3	R \& W	0	3	Bit_Parity_Stop, 0: 8bit_None_1, 1: 8bit_None_2, 2: 8bit_Even_1, 3: 8bit_Odd_1
4	R	min. Pa	max. Pa	DP measurement as PASCAL
5	R			Blank
6	R	0	1	Relay, contact position, 0: OFF/Open, 1: ON/Closed
7	R\&W	$\operatorname{min.~Pa~}$	$\operatorname{max.~Pa~}$	Relay, LOW Point
8	R\&W	$\operatorname{min.~Pa~}$	$\operatorname{max.~Pa~}$	Relay, HIGH Point
9	R \& W	0	4	Relay, Actions
$10-20$	R\&W			Blank

Dimensions (mm)

Description

The differential pressure transmitter serie PTG is used to measure differential pressure, overpressure and vacuum of gaseous, nonaggressive media. It provides 2 pressure ranges and 2 output signals, which are selectable by jumper.
Possible fields of application are building automation and air conditioning systems, overpressure measurement in clean rooms and laboratories, measurement of constant pressure in VAV applications, dynamic filter and ventilator monitoring.

Technical specifications

Medium
Measurement range
Linearity and hysteresis error
Repetition accuracy
Response time
Position dependence
Long term stability
Offset calibration
Supply voltage
Output signal
Switching output
Electrical connection
Display, optional
Housing material

Cable conduit
Housing dimensions
Weight
Protection class
Working humidity
Working temperature
Storage temperature
Accessories
Installation
Installation position
Standards
Optional

Air, non-combustible and non-aggressive gases
See schedule
$\leq \pm 1 \%$ of FS
$\leq \pm 0.2 \%$ of FS
$0,1 \mathrm{~s}$ or 1 s , selectable by jumper
$\leq \pm 0,02 \%$ of FS / g
$< \pm 0,5 \%$ final value/year
The output signal can be calibrated to zero by pressing the M key.
18... 30 V AC / DC

3 -wire connection, with switching output. The factory setting is $0 . . .10 \mathrm{~V} D \mathrm{DC}$, but can be changed to 4-20 mA by removing the jumper. 2-wire connection $4 . . .20 \mathrm{~mA}$ version is available upon request. npn transistor output for max. 30 V DC/100 mA
Screw terminal block for wires and strands up to $1,5 \mathrm{~mm}^{2}$
LED, 4 digits
Housing with process connection P2 (-)
Base part with process connection P1 (+)
M16x1,5 connection made of polyamide
approx. $81 \times 83 \times 41 \mathrm{~mm}$
approx. 125 g
IP65
0... $95 \% \mathrm{RH}$, non-condensing
$0 . .+50^{\circ} \mathrm{C}$
$-10 \ldots+70^{\circ} \mathrm{C}$
Connection set (PVC-hose $2 \mathrm{~m} \varnothing 6$ with 2 ABS nippels and 4 screws) included
Screw fastening
any
CE-conformity, RoHS
UL, conforms to UL Std. 61010-1, conforms to CSA Std. C22.2 No. 61010-1

Models	Measuring range	Max pressure
PTG1	$-50 \ldots 0 \ldots+50 \mathrm{~Pa}$	60 kPa
PTG2	$0 \ldots 100 \mathrm{~Pa}, 0 \ldots 250 \mathrm{~Pa}$	60 kPa
PTG3	$0 \ldots 500 \mathrm{~Pa}, 0 \ldots 1000 \mathrm{~Pa}$	75 kPa
PTG4	$0 \ldots 1 \mathrm{kPa}, 0 \ldots 2,5 \mathrm{kPa}$	85 kPa
PTG5	$0 \ldots 5 \mathrm{kPa}, 0 \ldots 10 \mathrm{kPa}$	85 kPa
PTG6	$0 \ldots 25 \mathrm{kPa}, 0 \ldots 50 \mathrm{kPa}$	200 kPa
PTG9	$-100 \ldots 0 \ldots+100 \mathrm{~Pa}$	60 kPa

Suffix A offset autocalibration
Suffix D for models with display
Suffix UL for models UL / CSA approval

Electrical wirings

3-wire

4	SA	Switching output, npn
3	GO	Ground GND
2	Y	Output signal 0 . . 10V $/ 4 \ldots 20 \mathrm{~mA}$
1	G	Supply voltage $24 \mathrm{VAC} / \mathrm{VDC}$

Settings

| | | Jumper (switched)
 | Aperto (open)
 Range pressione |
| ---: | :--- | :--- | :--- | :--- |
| | Bassa
 (low) | Alta
 (high) | |
| Rispossure range)
 (Response) | Lenta
 (slow) | Veloce
 (fast) | |
| Funzionamento
 (Mode) | Lineare
 (linear) | Quadratico
 (square root) | |
| Segnale di uscita
 (Output signal) | $0 \ldots 10 \mathrm{~V}$ | $4 \ldots 20 \mathrm{~mA}$ | |

Dimensions (mm)

ABS nippel (part of connection set APA3)

Programming version without display

In the version without display, you can program the switching value by acting in this way:
1 Apply the pressure or differential pressure at which you want the system switches
2 Press the "S" button for 5 seconds until the LED flashes quickly.
At this point the switching value is saved and the LED will light while reaching the set pressure.
For recalibration remove both pressure tube, press the button „MODE/Offset" for 5 seconds and than replase the pressure tube.

Programming display version

* Free from pipes or remove the cap from the two nozzles before proceeding with the offset re-calibration.

Description

The air differential pressure transmitter serie PTG and the velocity transmitter serie VTG are used to measure differential pressure, air flow volume and air flow speed.
The measured value can be the output and the parameterization on the device can be done via Modbus RTU data interface.
Possible fields of application are building automation and air conditioning systems, overpressure measurement in clean rooms and laboratories, measurement of constant pressure in VAV applications, dynamic filter and fan monitoring.

Technical specifications

Medium
Measurement range
Linearity and hysteresis error
Uncertainty (total error band w/o long-term and temperature effect)
Response time
Long term stability PTGM, VTGM
Long term stability PTGA, VTGA
Supply voltage
Output signal
Protocol
Type, Address
Baud rate
Data bit, Stop bit
Maximum current draw
Electrical connection
Display
Housing material
Housing dimensions
Weight
Protection class
Working humidity
Working and storage temperature PTGM, VTGM

PTGA, VTGA
Accessories
Installation
Installation position
Standards

Air, non-combustible and non-aggressive gases
See schedule
$\leq \pm 0,5 \%$ of $\mathrm{FS}, \min \pm 1 \mathrm{~Pa}$
$\pm 1 \%$ of $\mathrm{FS}, \min \pm 1 \mathrm{~Pa}$

0,2... 10 s
$< \pm 1 \%$ of FS
n.r.
18... 30 V AC / DC

Digital
ModBus RS-485, RTU
Slave, 1... 247
$9600 . .115200$ bd
8, 1
< 230 mA
Screw terminal block for wires and strands up to $1,5 \mathrm{~mm}^{2}$
LED, 4 digits
ABS
Approx. 81x83x41 mm
Approx. 140 g
IP65
0...95\% RH, non-condensing
$-20 \ldots+70^{\circ} \mathrm{C}$
$-10 . .+50^{\circ} \mathrm{C}$
Connection set (PVC-hose $2 \mathrm{~m} \varnothing 6$ with 2 ABS nippels and 4 screws) included
Screw fastening
Any
CE-conformity, RoHS

Setup

Configuration of air flow volume or air flow speed measurement

1. Select a calculation formula and enter a k-factor. Both dependents on the type of fan or measuring sensor.
2. Or create a reference air flow volume or air flow speed, which is entered directly.

The modbus is used to set the device. Please read the exact procedure in the installation manual.
Adjustable response time
The response time of the output signal can be variably set via Modbus.
Easy offset calibration
For PTGM and VTGM press the MODE/offset button or set via Modbus in an unpressurized state to adjust the offset to zero. The versions PTGA and VTGA perform an automated zero offset compensation.

Display
A red LED display shows the pressure value, air flow volume or air flow speed.
Mounting position
Can be mounted in any position. The zero offset calibration eliminates any possible position error.

Models

Pressure ranges for air differential pressure versions

Model	Pressure range	Overload capacity	Bursting pressure	Additional uncertainty with temperature $(\% \mathrm{FS} / 10 \mathrm{~K})$	
PTGAE	$-25 \ldots 0 \ldots+25 \mathrm{~Pa}$	60 kPa	100 kPa	PTGM	PTGA

Order matrix

Offset calibration		manual automatic	$\begin{aligned} & \text { PTGM } \\ & \text { PTGA } \end{aligned}$	
Configurable pressure ranges	-25...0... +25 Pa	only available as PTGA		E
	-50...0... +50 Pa			X
	-100...0...+100 Pa			W
	$0 . . .50 \mathrm{~Pa}$	only available as PTGA		1
	0... 100 Pa			2
	0... 250 Pa			3
	0...500 Pa			4
	0... 1000 Pa			5
	$0 . . .5000 \mathrm{~Pa}$			7
	$0 . .10 \mathrm{kPa}$			8
	$0 . . .25 \mathrm{kPa}$			9
	$0 . .50 \mathrm{kPa}$			A
	$0 . . .100 \mathrm{kPa}$			B

Pressure ranges for air flow volume or air flow speed versions

Model	Pressure range	Overload capacity	Bursting pressure	Additional uncertainty with temperature $(\%$ FS/10K)	
VTGA1	$0 \ldots 50 \mathrm{~Pa}$	60 kPa	100 kPa	VTGM	VTGA

Order matrix

Offset calibration		manual automatic	VTGM VTGA		
Configurable pressure ranges	0... 50 Pa	only available as VTGA		1	
	0... 100 Pa			2	
	0... 250 Pa			3	
	0... 500 Pa			4	
	0... 1000 Pa			5	
	$0 . . .5000 \mathrm{~Pa}$			7	
	$0 . .10 \mathrm{kPa}$			8	
Unit of display	Air flow volume	$\mathrm{m}^{3} / \mathrm{h} ; \mathrm{m}^{3} / \mathrm{s} ; \mathrm{cfm}$; l/s			A
	Air flow speed	m / s; ft/min			B

Dimensions (mm)

ABS nippel
(part of connection set APA3)

Terminal assignments

Plug-in terminals 2×5-pole			$090 \% 09$ $19+94$ 12345	
1	in	Supply voltage (18...30 VAC / VDC)		
2	in	Ground (GND) Common		
3	in	A / Data + (D0)		
4	in	B / Data - (D1)		
5	in	Shield		
1	out	Supply voltage (18... 30 VAC / VDC)		
2	out	Ground (GND) Common		
3	out	A / Data + (D0)		
4	out	B / Data - (D1)		
5	out	Shield		

Description

The differential pressure transmitter serie PTM is used to measure differential pressure, overpressure and vacuum of gaseous, nonaggressive media. It provides 2 pressure ranges and 2 output signals, which are selectable by jumper.
Possible fields of application are building automation and air conditioning systems, overpressure measurement in clean rooms and laboratories, measurement of constant pressure in VAV applications, dynamic filter and ventilator monitoring.

Technical specifications

Medium
Measurement range
Linearity and hysteresis error
Repetition accuracy
Response time Position dependence
Long term stability Offset calibration
Supply voltage
Output signal
Switching output
Electrical connection
Display, optional
Housing material

Cable conduit
Housing dimensions
Weight
Protection class
Working humidity
Working temperature
Storage temperature
Accessories

Installation
Installation position
Standards
Optional

Air, non-combustible and non-aggressive gases
See schedule
$\leq \pm 1 \%$ of FS
$\leq \pm 0.2 \%$ of FS
0.1 s or 1 s , selectable by jumper
$\leq \pm 0,02 \%$ of FS / g
$< \pm 0,5 \%$ final value/year
The output signal can be calibrated to zero by pressing the M key.
18... 30 V AC / 16... 32 V DC

3 -wire connection, with switching output. The factory setting is $0-10 \mathrm{VDC}$, but can be changed to $4-20 \mathrm{~mA}$ by removing the jumper. 2-wire connection 4-20 mA version is available upon request.
npn transistor output for max. 30 V DC/ 100 mA
Screw terminal block for wires and strands up to $1,5 \mathrm{~mm}^{2}$
LED, 4 digits
Housing with process connection P2 (-)
Base part with process connection P1 (+)
M16x1,5 connection made of polyamide
approx. $\varnothing 85 \times 58 \mathrm{~mm}$
approx. 150 g
IP54
0...95\% RH, non-condensing
$0 . . .+50^{\circ} \mathrm{C}$
$-40 \ldots+70^{\circ} \mathrm{C}$
Connection set (PVC-hose $2 \mathrm{~m} \varnothing 6$ with 2 ABS nippels and 4 screws) included and snap-on plastic brackets optionally
Screw fastening
any
CE-conformity, RoHS
UL, conforms to UL Std. 61010-1, conforms to CSA Std. C22.2 No. 61010-1

Models	Measuring range	Max pressure
PTM1	$-50 \ldots 0 \ldots+50 \mathrm{~Pa}$	20 kPa
PTM2	$0 \ldots 100 \mathrm{~Pa}, 0 \ldots 250 \mathrm{~Pa}$	20 kPa
PTM3	$0 \ldots 500 \mathrm{~Pa}, 0 \ldots 1000 \mathrm{~Pa}$	20 kPa
PTM4	$0 \ldots 1 \mathrm{kPa}, 0 \ldots 2,5 \mathrm{kPa}$	40 kPa
PTM5	$0 \ldots 5 \mathrm{kPa}, 0 \ldots 10 \mathrm{kPa}$	60 kPa
PTM6	$0 \ldots 25 \mathrm{kPa}, 0 \ldots 50 \mathrm{kPa}$	300 kPa
PTM9	$-100 \ldots 0 \ldots+100 \mathrm{~Pa}$	20 kPa

Suffix D for models with display
Suffix UL for models UL / CSA approval

Electrical wirings

3-wires

4	SA	Switching output, npn
3	GO	Ground GND
2	Y	Output signal 0 ...10V $/ 4 \ldots 20 \mathrm{~mA}$
1	G	Supply voltage $24 \mathrm{VAC} / \mathrm{VDC}$

Setting

Dimensions (mm)

APA1 Snap-on plastic bracket, L-shaped

APA2 Snap-on plastic bracket, S-shaped

$$
2
$$

ABS nippel (part of connection set APA3)

Programming version without display

In the version without display, you can program the switching value by acting in this way:
1 Apply the pressure or differential pressure at which you want the system switches
2 Press the "S" button for 5 seconds until the LED flashes quickly.
At this point the switching value is saved and the LED will light while reaching the set pressure.

Programming display version

* Free from pipes or remove the cap from the two nozzles before proceeding with the offset re-calibration.

Description

The transmitters of the PTV series are used to measure volume flow, differential pressure, overpressure and vacuum. A jumper enables switching between volume flow and pressure measurement. Monitoring of gaseous, non-combustible and non-aggressive media. Possible usage areas are: Building automation and air conditioning systems, overpressure measurement in clean rooms and laboratories, measurement of constant pressure in VAV applications, dynamic filter and ventilator monitoring

Technical specification

Power supply
Output signal
Load for 4 ... 20 mA output
Load for 0 ... 10 V output
Units, selectable
K factor
Switching output
Working temperature
Storage temperature
Typical long-term stability (Pressure range)
Linearity error incl. hysteresis and repetition accuracy (Pressure range)
Humidity
2 response times, selectable
between 0.1 s and 20 s
Process connection P1 and P2
Electrical connection
Housing material
Housing dimensions
Weight
Protection class acc. to EN 60529
Standards

18 ... 30 VAC/DC
0 ... 10 V or 4 ... 20 mA
20... 500Ω
$\geq 1 \mathrm{k} \Omega(\geq 10 \mathrm{~mA})$
$\mathrm{m}^{3} / \mathrm{h} ; \mathrm{m}^{3} / \mathrm{s} ; \mathrm{cfm}$; l/s
$0,001 \ldots 9,9 \times 10^{5}$
Transistor, maximum switching capacity of 30 VDC / 100 mA
$0 \ldots 50^{\circ} \mathrm{C}$
$-10 \ldots 70^{\circ} \mathrm{C}$
$\leq \pm 1,0 \%$ from end value / year

$\leq \pm 1 \%$ del FS, $\min \pm 1 \mathrm{~Pa}$
0 ... 95% RH, non-condensing
0,1-1,0s
$\varnothing 6$ mm
Plug-in terminals for wires and strands up to $1.5 \mathrm{~mm}^{2}$ with Cap nut ABS
ca. $81 \times 43 \times 41 \mathrm{~mm}$
125 g
IP 65
EN 60770, EN 61326, 2014/30/EU, 2011/65/EU (RoHS II)

| Models | | Range | Overload
 capacity | Bursting
 pressure | Temperature error |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| PTV1.. | $0 \ldots 50 \mathrm{~Pa}$ | $(0 \ldots 0,5 \mathrm{mbar})$ | 60 kPa | 100 kPa | $\leq \pm 3,0 \%$ of full range |
| PTV2.. | $0 \ldots 100 \mathrm{~Pa}$ | $(0 \ldots 1,0 \mathrm{mbar})$ | 60 kPa | 100 kPa | $\leq \pm 2,0 \%$ of full range |
| PTV3.. | $0 \ldots 250 \mathrm{~Pa}$ | $(0 \ldots 2,5 \mathrm{mbar})$ | 60 kPa | 100 kPa | $\leq \pm 2,5 \%$ of full range |
| PTV4.. | $0 \ldots 500 \mathrm{~Pa}$ | $(0 \ldots 5,0 \mathrm{mbar})$ | 75 kPa | 125 kPa | $\leq \pm 2,5 \%$ of full range |
| PTV5.. | $0 \ldots 1000 \mathrm{~Pa}$ | $(0 \ldots 10 \mathrm{mbar})$ | 85 kPa | 135 kPa | $\leq \pm 1,5 \%$ of full range |
| PTV7.. | $0 \ldots 5 \mathrm{kPa}$ | $(0 \ldots 50 \mathrm{mbar})$ | 85 kPa | 135 kPa | $\leq \pm 1,0 \%$ of full range |
| PTV8.. | $0 \ldots 10 \mathrm{kPa}$ | $(0 \ldots 100 \mathrm{mbar})$ | 85 kPa | 135 kPa | $\leq \pm 1,0 \%$ of full range |

Characteristics and settings

- Select a calculation formula and enter the k-factor. The k-factor can be found, for example, in documentation provided by the manufacturer of the ventilator or the probe.
- The output signal can be changed between 0 ... 10 Volt and $4 \ldots 20 \mathrm{~mA}$ by removing a jumper.
- To give a switch signal at an user defined pressure level the transmitter has an adjustable transistor switching output (npn NO) with a maximum switching capacity of $30 \mathrm{Vdc} / 100 \mathrm{~mA}$.
- The response time of the output signal can be configured using a jumper. If the jumper is in place the response time is slow (factory setting), which is useful for suppressing brief pressure peaks. If the application requires a fast response time the jumper must be removed.
- If there are any drifts on output, the transmitter can be adjusted by pressing the Offset-button to zero.
- The differential pressure transducer can be mounted in any position.

Order matrix

Configurable	$0 \ldots 50 \mathrm{~Pa}$	$(0 \ldots 0,5 \mathrm{mbar})$	PTV	$\mathbf{1}$
pressure range	$0 \ldots 100 \mathrm{~Pa}$	$(0 \ldots 1,0 \mathrm{mbar})$		$\mathbf{2}$
	$0 \ldots 250 \mathrm{~Pa}$	$(0 \ldots 2,5 \mathrm{mbar})$		$\mathbf{3}$
	$0 \ldots 500 \mathrm{~Pa}$	$(0 \ldots 5,0 \mathrm{mbar})$	$\mathbf{4}$	$\mathbf{5}$
	$0 \ldots 1000 \mathrm{~Pa}$	$(0 \ldots 10 \mathrm{mbar})$	$(0 \ldots 50 \mathrm{mbar})$	$\mathbf{7}$
Volume flow unit	$0 \ldots 5 \mathrm{kPa}$	$(0 \ldots 100 \mathrm{mbar})$	$\mathbf{8}$	
	$0 \ldots 10 \mathrm{kPa}$		\mathbf{A}	

Formula configuration

1) Select a calculation formula and enter the k-factor (jumper 1 open): This procedure is used when the k-factor is known. The k -factor can be found, for example, in documentation provided by the manufacturer of the ventilator or the probe. Use the menu guide on the device for configuration.
2) Creating reference volume flow (jumper 1 plugged in): Create a reference volume flow to configure the device.

Use FLa in the menu guide for entry - see description in the operating instructions.

Selection on device	Manufacturer, e.g.	Formula in data sheet of manufactuter
F 1	Ebm-Papst, Ziehl- Abegg	$q=k \cdot \sqrt{\Delta p}$
F 2	Ziehl-Abegg	$q=\sqrt{\frac{\rho_{20}}{\rho}} \cdot k \cdot \sqrt{\Delta p}$
F 3	Nicotra-Gebhardt, Rosenberg	$q=k \cdot \sqrt{\frac{2}{\rho} \cdot \Delta p}$
F 4	Fläkt Woods	$q=\frac{1}{k} \cdot \sqrt{\Delta p}$

Diagramm

Terminal assignments

3 -wire with switching output

[^1]Jumper assignments

1. Rotary coding switch
2. Button MODE/Offset
3. Button SET/Switchp.
4. Plug-in terminals
5. Cap nut conduit
6. Jumper

Jumper assignments

The function settings of differential pressure transducer are achieved by inserting jumpers appropriately within the transducer.

Volume flow mode: Jumper 3 open		Function	Switched \longrightarrow	Open	-
		Enty	ref. Volume flow		K-factor
		Responce time	Slow		Fast
		Operation mode			Volume flow
		Output signal	0... 10 VDC		4...20 mA

Volume flow mode: Jumper 3 plugged in		Function	Switched \longrightarrow	Open $\square \square$
		Setting	Zero- point	Analog end point
		Responce time	Slow	Fast
		Operation mode	Pressure	Volume flow
		Output signal	0... 10 V DC	$4 . .20 \mathrm{~mA}$

Dimensions (mm)

Description

The differential pressure transmitters serie PTQ is used to measure differential pressure, overpressure and vacuum of gaseous, nonaggressive media. It provides 8 pressure ranges and 2 output signals, which are easily selectable by jumper or rotary selector switch. Possible fields of application are building automation and air conditioning systems, overpressure measurement in clean rooms and laboratories, measurement of constant pressure in VAV applications, dynamic filter and ventilator monitoring.

Technical specifications

Medium
Measurement range

Linearity and hysteresis error
Repetition accuracy
Response time
Position dependence
Long term stability
Offset calibration
Max pressure
Supply voltage
Output signal
Switching output
Electrical connection
Display, optional
Housing
Cable conduit
Dimensions
Weight
Protection type
Working humidity
Working temperature
Storage temperature
Accessories
Installation
Installation position
Standards

Air, non-combustible and non-aggressive gases
$-50 \ldots 0 \ldots+50 \mathrm{~Pa},-100 \ldots 0 \ldots+100 \mathrm{~Pa},-250 \ldots 0 \ldots+250 \mathrm{~Pa}$, $-500 \ldots 0 . . .500 \mathrm{~Pa}, 0 \ldots 100 \mathrm{~Pa}, 0 \ldots 250 \mathrm{~Pa}, 0 \ldots . .500 \mathrm{~Pa}, 0 \ldots 1000 \mathrm{~Pa}$
$\leq \pm 1 \%$ of FS
$\leq \pm 0.2 \%$ of FS
0.1 s or 1 s , selectable by jumper
$\leq \pm 0,02 \%$ of FS / g
$< \pm 0,5 \%$ final value/year
It performs an automated zero offset compensation. No re-calibaration needed.
20 kPa
18... 30 V AC / 16... 32 V DC

3 -wire connection, with switching output. The factory setting is $0-10 \mathrm{VDC}$, but can be changed to $4-20 \mathrm{~mA}$ by removing the jumper.
npn transistor output for max. 30 V DC/100 mA
screw terminal block for wires and strands up to $1,5 \mathrm{~mm}^{2}$
LED, 4 digits
Housing with process connection P2 (-)
Base part with process connection P1 (+)
M16x1,5 connection made of polyamide
approx. $\varnothing 85 \times 58 \mathrm{~mm}$
approx. 150 g
IP54
0...95\% RH, non-condensing
$0 . . .+50^{\circ} \mathrm{C}$
$-40 \ldots+70^{\circ} \mathrm{C}$
Connection set (PVC-hose $2 \mathrm{~m} \varnothing 6$ with 2 ABS nippels and 4 screws) included and snap-on plastic brackets optionally
Screw fastening
any
CE-conformity, RoHS

Models	Measuring range	Version
PTQ1	$-50 \ldots 0 \ldots+50 \mathrm{~Pa},-100 \ldots 0 \ldots+100 \mathrm{~Pa},$ $-250 \ldots 0 \ldots+250 \mathrm{~Pa},-500 \ldots 0 \ldots 500 \mathrm{~Pa}$, $0 \ldots 100 \mathrm{~Pa}, 0 \ldots 250 \mathrm{~Pa}, 0 \ldots 500 \mathrm{~Pa}, 0 \ldots 1000 \mathrm{~Pa}$	
PTQ1D	$-50 \ldots 0 \ldots+50 \mathrm{~Pa},-100 \ldots 0 \ldots+100 \mathrm{~Pa},$ $-250 \ldots 0 \ldots+250 \mathrm{~Pa},-500 \ldots500 \mathrm{~Pa}$, 0... $100 \mathrm{~Pa}, 0 \ldots 250 \mathrm{~Pa}, 0 \ldots 500 \mathrm{~Pa}, 0 \ldots 1000 \mathrm{~Pa}$	with display
Accessories:	APA1 Snap-on plastic bracket, L-shaped APA2 Snap-on plastic bracket, S-shaped	

Electrical wirings

3-wires

4	SA	Switching output, npn
3	GO	Ground GND
2	Y	Output signal 0 $\ldots 10 \mathrm{~V} / 4 \ldots 20 \mathrm{~mA}$
1	G	Supply voltage $24 \mathrm{VAC} / \mathrm{VDC}$

Setting

Dimensions (mm)

APA1 Snap-on plastic bracket, L-shaped

APA2 Snap-on plastic bracket, S-shaped

ABS nippel (part of connection set APA3)

Programming version without display

In the version without display, you can program the switching value by acting in this way:
1 Apply the pressure or differential pressure at which you want the system switches
2 Press the "S" button for 5 seconds until the LED flashes quickly.
At this point the switching value is saved and the LED will light while reaching the set pressure.

Programming display version

* Free from pipes or remove the cap from the two nozzles before proceeding with the offset re-calibration.

Description

The airflow and velocity transmitter series FSE is design to control the air flow into air duct in HVAC systems and in VAV applications.

Technical specifications

Measurement ranges

Velocity

Temperature

Accuracy velocity

Temperature

Range 2: $0 \ldots . .400$ FPM ($0 . . .2 \mathrm{~m} / \mathrm{s}$)
Range 10: $0 \ldots . .2000$ FPM ($0 \ldots . .10 \mathrm{~m} / \mathrm{s}$)
Range 20: 0-4000 FPM ($0 \ldots .20 \mathrm{~m} / \mathrm{s}$)
$0 . .50^{\circ} \mathrm{C}$
Range 2: $0 . . .400$ FPM <20 FPM $+5 \%$ from reading
Range 10: $0 \ldots 2000$ FPM <100 FPM $+5 \%$ from reading
Range 20: 0 ... 4000 FPM <200 FPM $+5 \%$ from reading
$<0,55^{\circ} \mathrm{C}$ for $v>100$ FPM

Accuracy specications include: general accuracy, temperature drift, linearity, hysteresis, long term stability, and repetition error.

Media compatibility	Dry air or non-aggressive gases
Measuring units	FPM and ${ }^{\circ} \mathrm{F}$
Measuring element	temperature: NTC10K, velocity: Pt1000
Electrical	Input $24 \mathrm{VAC/DC} \pm 10 \%$, current consumption 35 mA (50 mA with relay) +40 mA with current output
Output signal 1	(Tout) $0 \ldots 10$ VDC (linear to temperature) $0 \ldots 50^{\circ} \mathrm{C} L \min 1 \mathrm{~K}$ VDC Output $=32^{\circ} \mathrm{F}+\left(9\right.$ degrees F^{*} volts) $4-20 \mathrm{~mA}$ (linear to temperature) $0 \ldots 50^{\circ} \mathrm{C} L$ max 400 mA Output $=32^{\circ} \mathrm{F}+\left[5.625\right.$ degrees $\left.\mathrm{F}^{*}(\mathrm{~mA}-4)\right]$
Output signal 2	(vout) 0... 10 VDC (linear to FPM), L min 1K, 4... 20 mA (linear to FPM), L max 400
Relay out	3 screw terminal block $0,2 \ldots 1,5 \mathrm{~mm}^{2}$, potential free SPDT, 250 VAC, $6 \mathrm{~A} / 30$ VDC, 6 A adjustable switching point and hysteresis
Display	$31 / 2$ Digit LCD display
Size	$45,7 \times 12,7 \mathrm{~mm}$
Electrical connections	2 each
Power supply \& Signal out	4 screw terminal block 16-24 AWG (0,2...1,5 mm ${ }^{\text {2 }}$)
Relay Out	3 screw terminal block 16-24AWG (0.2-1.5 mm²)
Cable inlet	$2 \times \mathrm{M} 16$
Working temperature	$0 . . .50^{\circ} \mathrm{C}$
Storage temperature	$-20 . .70^{\circ} \mathrm{C}$
Working humidity	0 to $95 \% \mathrm{RH}$, non condensing
Protection type	IP54
Dimensions housing	$90 \times 95 \times 36 \mathrm{~mm}$
Dimensions probe	\varnothing : 10 mm
Length	210 mm
Immersion length with flange	Adjustable 50... 180 mm
Mounting	2 screw holes, 4 mm
Materials	Case ABS (UL 94 V-0 approved), cover PC (UL 94 V-0 approved), pocket stainless steel
Standards	CE-conformity, RoHS, LVD, WEEE

Models	Display + relay
FSE1	\bullet
FSE2	-

Electrical connections

Installation

1) Mount the device in desired location, see Step 1.
2) Open the lid and route cable through strain relief and connect the wires to terminal block, see Step 2. Use separate strain relief for each cable.
3) The device is now ready for conguration.

WARNING! Apply power after the device is properly wired.
STEP 1 (mounting device)

1) Select mounting location (in a duct).
2) Use the mounting ange of the device as a template and mark the screw holes.
3) Mount the ange on the duct with screws (not included), Figure 1a.
4) Adjust the probe to desired depth. Ensuring the end of the probe reaches the middle of the duct, Figure 1b.
5) Tighten the screw on the ange, to hold the probe in position.

STEP 2 (Wiring diagrams)

For CE compliance, a properly grounded shielding cable is required.

1) Unscrew strain relief and route cable(s). Use the strain relief on left for power in and signal out (Tout/vout) and the strain relief on right for relay.
2) Connect the wires as shown in Figures $2 a$ and $2 b$.
3) Tighten the strain relief.

Wiring: Relay output

Figure 2b

Mounting orientation

Figure 1c

Conguration requires:

1) Select the desired measurement mode, Step 3.
2) Select the desired measurement range, Step 4.
3) Congure the relay (optional), Steps 5 and 6.

Selection convention used to input configuration information into FSE Transducer
Entering conguration information into the FSE Air Velocity and Temperature transducer is accomplished with the Joystick, see Figure 5, the Display, and Jumpers installed and removed from the set of three (3) or four (4) jumper pins, see Figure 5.
Joystick Pressing down or tilting (Tilt Up/Down or SidetoSide) will cycle the display though the available menu choices. The Joystick will only cycle the choices up, if you accidently pass your preferred selection continue to activate the Joystick until your selection reappears.
Jumpers Jumpers are used in two (2) different ways:

1) Jumpers are installed, and remain installed, to select the required choice, see Steps 3 and 4.
2) Jumpers are installed, a choice is made, and the jumper is removed, see Steps 5 and 6.

STEP 3 (select measurement mode)
Congure the outputs:

1) Select the output mode, Current ($4-20 \mathrm{~mA}$) or Voltage ($0-10 \mathrm{~V}$), by installing jumpers as shown in Figure 3b. Both outputs,
Temperature (T) and Velocity (v), are congured separately.

STEP 4 (select measurement range)

Select the measurement range by installing jumpers as shown in Figure 4. Note: Figure 3, Jumper Installation.

STEP 5 (configure relay) (jumper sw.p)

Note: display is required.

1) Install jumper to pins labeled sw.p. (Switching Point), see Figure 5.
2) Press down/tilt the push-button (joystick). The values (FPM) for the Switching Point (relay on/off) will cycle up. Continue until the required value (FPM) is shown on the display.
3) Remove and store jumper after conguration is completed.

STEP 6 (configure relay) (jumper hyst.)

1) Install jumper to pins labeled hyst. (hysteresis), see Figure 5.
2) Press down/tilt the push-button (joystick). The values (FPM) for the hysteresis of the relay switching point will cycle up to the maximum value. Continue until the required value (FPM) is shown on the display.
3) Remove and store jumper after conguration is completed.

Jumper installation

grey color indicates that a jumper is installed.
Figure 3

Temperature Output (Tout): T=Voltage (V) Velocity Output (vout): v=Voltage (V)

Temperature Output (Tout): T=Current (mA) Velocity Output (vout): v=Current (mA)

Temperature Output (Tout): T=Volt (V) Velocity Output (vout): v=Current (mA)

Temperature Output (Tout): $\mathrm{T}=$ Current (mA)
Velocity Output (vout): $v=$ Volt (V)

Figure 3b

About hysteresis

Hysteresis represents a dead-zone less than or equal to 20% of the Range Selected. The hysteresis is anchored at the Switching Point (sw p.), extending to the hysteresis range selected.

In above example Switch Point is set at 300 FPM, and hysteresis is set at 50 FPM. As the velocity increases over 300 FPM , the relay will open/close. As velocity reduces, the relay will not close/open until the velocity passes 250 FPM, thus preventing rapid cycling.

Range		Maximun Hysteresis	
m / s	FPM	m / s	FPM
$0 \ldots 2$	$0 \ldots 400$	0,4	80
$0 \ldots 10$	$0 \ldots 2.000$	2	400
$0 \ldots 20$	$0 \ldots 4.000$	4	800

The Hysteresis Maximum setting is based on the Range Selected.

Dimensions (mm)

0 0
 000

cyanline

sensors

Description

The temperature sensor serie SC measures the temperature from -35 up to $+105^{\circ} \mathrm{C}$ of gaseous and liquid media. The range is available with all type of current sensor elements. The stainless steel sleeve protects the sensor e.g. against mechanical impacts. It is sealed by the PVC cable against humidity and can be mounted in an immersion pocket, with a spring or bracket for pipe contact.

Technical specifications

Measurement range
Sensor
Type of connection
Measured current
Electrical connection
Leakage resistance
Protection sleeve
Sleeve dimension
Protection type
Storage temperature
Installation
Standards
$-35 . .+105^{\circ} \mathrm{C}$
Pt100, Pt1000, Ni1000, KTY, NTC
2-wires
approx. 1 mA
PVC cable from 2 m up to $5 \mathrm{~m}\left(2 \times 0,25 \mathrm{~mm}^{2}\right.$, max. $\left.+105^{\circ} \mathrm{C}\right)$ with core cable ends
$>100 \mathrm{MOhm}$, at $+20^{\circ} \mathrm{C}(500 \mathrm{~V}$ DC)

Stainless steel V4A
$\varnothing 6 x 50 \mathrm{~mm}$
IP67 (moisture sealed rolled)
$-20 \ldots+70^{\circ} \mathrm{C}$
screw-in pocket, mounting flange, compression fitting (not in scope of delivery) CE conformity, RoHS

Models	Type of sensor	Cable length (L)
SC1-1	Pt100 (DIN EN 60751 CI. B)	$1 \mathrm{mPVC}\left(2 \times 0,25 \mathrm{~mm}^{2}\right)$
SC1-2	Pt100 (DIN EN 60751 CI. B)	$2 \mathrm{mPVC}\left(2 \times 0,25 \mathrm{~mm}^{2}\right)$
SC1-5	Pt100 (DIN EN 60751 CI. B)	5 m PVC ($2 \times 0,25 \mathrm{~mm}^{2}$)
SC2-1	Pt1000 (DIN EN 60751 CI. B)	$1 \mathrm{mPVC}\left(2 \times 0,25 \mathrm{~mm}^{2}\right)$
SC2-2	Pt1000 (DIN EN 60751 CI. B)	$2 \mathrm{mPVC}\left(2 \times 0,25 \mathrm{~mm}^{2}\right)$
SC2-5	Pt1000 (DIN EN 60751 CI. B)	$5 \mathrm{mPVC}\left(2 \times 0,25 \mathrm{~mm}^{2}\right)$
SC3-2	Ni1000 (TK6180)	$2 \mathrm{mPVC}\left(2 \times 0,25 \mathrm{~mm}^{2}\right)$
SC3-5	Ni1000 (TK6180)	5 m PVC ($2 \times 0,25 \mathrm{~mm}^{2}$)
SC4-2	Ni1000 (TK5000)	$2 \mathrm{mPVC}\left(2 \times 0,25 \mathrm{~mm}^{2}\right)$
SC4-5	Ni1000 (TK5000)	5 m PVC ($2 \times 0,25 \mathrm{~mm}^{2}$)
SC5-2	NTC20k ($\pm 1 \%$)	$2 \mathrm{mPVC}\left(2 \times 0,25 \mathrm{~mm}^{2}\right)$
SC5-5	NTC20k ($\pm 1 \%$)	$5 \mathrm{mPVC}\left(2 \times 0,25 \mathrm{~mm}^{2}\right)$
SC6-2	NTC10k ($\pm 1 \%$) BETA 3435K	$2 \mathrm{mPVC}\left(2 \times 0,25 \mathrm{~mm}^{2}\right)$
SC6-5	NTC10k ($\pm 1 \%$) BETA 3435K	$5 \mathrm{mPVC}\left(2 \times 0,25 \mathrm{~mm}^{2}\right)$
SC7-2	KTY 81-110 ($\pm 1 \%$)	$2 \mathrm{mPVC}\left(2 \times 0,25 \mathrm{~mm}^{2}\right)$
SC7-5	KTY 81-110 ($\pm 1 \%$)	$5 \mathrm{mPVC}\left(2 \times 0,25 \mathrm{~mm}^{2}\right)$
SC8-2	KTY 81-121 ($\pm 1 \%$)	$2 \mathrm{mPVC}\left(2 \times 0,25 \mathrm{~mm}^{2}\right)$
SC8-5	KTY 81-121 ($\pm 1 \%$)	$5 \mathrm{mPVC}\left(2 \times 0,25 \mathrm{~mm}^{2}\right)$

Dimensions (mm)

Description

The temperature sensor serie SCT measures the temperature from -50 up to $+100^{\circ} \mathrm{C}$ strap-on mounting on pipes and arched surfaces. The range is available with all type of current sensor elements.

Technical specifications

Measurement range	$-50 \ldots+100^{\circ} \mathrm{C}$
Sensor	Pt100, Pt1000, Ni1000, NTC
Type of connection	$2-$ wires
Measured current	approx. 1 mA
Electrical connection	2 mPVC cable $\left(2 \times 0,25 \mathrm{~mm}^{2}\right.$, max. $\left.+100^{\circ} \mathrm{C}\right)$
	with core cable ends
Leakage resistance	$>100 \mathrm{MOhm}$, at $+20^{\circ} \mathrm{C}(500 \mathrm{~V} \mathrm{DC})$
Protection sleeve	Brass
Protection type	IP 54
Storage temperature	$-20 \ldots+70^{\circ} \mathrm{C}$
Accessory	Spring band (included) for pipes from 25 to 110 mm
Standards	CE conformity, RoHS

Models	Type of sensor
SCT1-2	Pt100 (DIN EN 60751 CI. B)
SCT2-2	Pt1000 (DIN EN 60751 CI. B)
SCT3-2	Ni1000 (TK6180)
SCT4-2	Ni1000 (TK5000)
SCT5-2	NTC20k ($\pm 1 \%)$
SCT6-2	NTC10k ($\pm 1 \%)$ BETA 3435K

Dimensions (mm)

Description

The temperature sensor serie SCK measures the temperature from -50 up to $+100^{\circ} \mathrm{C}$ on pipes or round surfaces. The range is available with all type of current sensor elements.

Technical specifications

Measurement range

Sensor

Type of connection
Measured current
Electrical connection

Housing

Cable entry
Protection type
Storage temperature
Installation
Standards
$-50 \ldots+100^{\circ} \mathrm{C}$
Pt100, Pt1000, Ni1000, NTC, KTY.
2 fili
approx. 1 mA
Screw terminal block for wires up to $1,5 \mathrm{~mm}^{2}$ PA6, RAL9010

M16 high-strength cable gland with strain relief IP65
$-20 \ldots+70^{\circ} \mathrm{C}$
Mounting flange (included)
CE conformity, RoHS

Models	Type of sensor
SCK1	Pt100 (DIN EN 60751 CI. B)
SCK2	Pt1000 (DIN EN 60751 CI. B)
SCK3	Ni1000 (TK6180)
SCK4	Ni1000 (TK5000)
SCK5	NTC20k ($\pm 1 \%)$
SCK6	NTC10k $(\pm 1 \%)$ BETA 3435K
SCK7	KTY 81-110 $(\pm 1 \%)$
SCK8	KTY 81-121 $(\pm 1 \%)$

Dimensions (mm)

Description

The radiation sensor serie STR designed in a modern housing measures the temperature from -30 up to $+75^{\circ} \mathrm{C}$ of gaseous media. The range is available with all type of current sensor elements and can be mounted directly on-wall with 2 fixing screws.

Technical specifications

Measurement range	$-30 \ldots+75^{\circ} \mathrm{C}$
Sensor	$\mathrm{Pt} 100, \mathrm{Pt} 1000$, Ni1000, KTY, NTC
Type of connection	2-wires
Measured current	approx. 1 mA
Electrical connection	Screw terminal block for wires up to $1,5 \mathrm{~mm}^{2}$
Cable entry	M 16 high-strength cable gland with strain relief
Leakage resistance	$>100 \mathrm{MOhm}$, at $+20^{\circ} \mathrm{C}(500 \mathrm{~V}$ DC)
Housing	polyamide (synthetic) colour white
Dimensions	$58 \times 64 \times 53 \mathrm{~mm}$
Protection type	$\mathrm{IP65}$
Storage temperature	$-20 \ldots+70^{\circ} \mathrm{C}$
Installation	Screw fastening
Standards	$\mathrm{CE}-$ conformity, RoHS

Models	Type of sensor
STR1	Pt100 (DIN EN 60751 CI. B)
STR2	Pt1000 (DIN EN 60751 CI. B)
STR3	Ni1000 (TK6180)
STR4	NTC1,8k $(\pm 1 \%)$
STR5	NTC20k ($\pm 1 \%)$
STR6	NTC10k $(\pm 1 \%)$ BETA 3435 K
STR7	KTY 81-110 $(\pm 1 \%)$
STR8	KTY 81-121 $(\pm 1 \%)$

Electrical wirings

Dimensions (mm)

Description

The temperature sensor serie SA designed in a modern housing measures the temperature from -30 up to $+60^{\circ} \mathrm{C}$ of gaseous media. The range is available with all type of current sensor elements and can be mounted directly on-wall by an adapter or 2 fixing screws. The extra wide ventilation slots ensures a good air circulation for a high accuracy of measurement.

Technical specifications

Measurement range

Sensor

Type of connection
Measured current
Electrical connection
Leakage resistance
Housing
Dimensions
Protection type
Protection class
Storage temperature
Installation
Standards
$-30 \ldots+60^{\circ} \mathrm{C}$
Pt100, Pt1000, Ni1000, KTY, NTC
2-wires
approx. 1 mA
Screw terminal block for wires up to $1,5 \mathrm{~mm}^{2}$
$>100 \mathrm{MOhm}$, at $+20^{\circ} \mathrm{C}(500 \mathrm{~V} \mathrm{DC})$
polyamide (synthetic) colour white
87×87x30 mm
IP30
III
$-20 \ldots+70^{\circ} \mathrm{C}$
Screw fastening on-wall, on in-wall junction box with optional adapter frame (optional)
CE-conformity, RoHS

Models	Type of sensor
SA1	Pt100 (DIN EN $60751 \mathrm{Cl} . \mathrm{B})$
SA2	Pt1000 (DIN EN $60751 \mathrm{Cl} . \mathrm{B})$
SA3	Ni1000 $($ TK6180 $)$
SA4	Ni1000 $($ TK5000 $)$
SA5	NTC20k ($\pm 1 \%)$
SA6	NTC10k $(\pm 1 \%)$ BETA 3435K
SA7	KTY 81-110 $(\pm 1 \%)$
SA8	KTY 81-121 $(\pm 1 \%)$

Electrical wirings

Dimensions (mm)

Description

The temperature sensor serie SO measures the outdoor temperature from -50 up to $90^{\circ} \mathrm{C}$ by a sensor built-in a robust plastic housing and is humidity and temperature resistant. The range is available with all type of current sensor elements. The temperature sensor can be mounted in climate-sensitive areas e.g. on outside walls by avoiding a direct solar radiation.

Technical specifications

Measurement range
Sensor
Type of connection
Measured current
Electrical connection
Leakage resistance
Housing

Cable entry
Dimensions
Protection type
Storage temperature
Installation
Standards
$-50 \ldots+90^{\circ} \mathrm{C}$
Pt100, Pt1000, Ni1000, KTY, NTC
2-wires
approx. 1 mA
Screw terminal block for wires up to $1,5 \mathrm{~mm}^{2}$
$>100 \mathrm{MOhm}$, at $+20^{\circ} \mathrm{C}$ (500 V DC)
Polyamide (synthetic) with snap closing screws, colour white like RAL 9010

M16 high-strength cable gland with strain relief
$64 \times 58 \times 34,5 \mathrm{~mm}$
IP65
$-20 \ldots+70^{\circ} \mathrm{C}$
Screw fastening
CE conformity, RoHS

Models	Type of sensor
SO1	Pt100 (DIN EN 60751 CI. B)
SO2	Pt1000 (DIN EN 60751 CI. B)
SO3	Ni1000 (TK6180)
SO4	Ni1000 (TK5000)
SO5	NTC20k ($\pm 1 \%)$
SO6	NTC10k $(\pm 1 \%)$ BETA 3435K
SO7	KTY 81-110 $(\pm 1 \%)$
SO8	KTY 81-121 $(\pm 1 \%)$

Electrical wirings

Dimensions (mm)

Description

The temperature sensor serie SD measures the duct temperature from -30 up to $+150^{\circ} \mathrm{C}$ of gaseous and liquid media. The range is available with all type of current sensor elements. The temperature sensor can be mounted directly on ducts or pipes by the included mounting flanged and can be easily and quickly be replaced in case of maintenance.

Technical specifications

Measurement range

Sensor

Type of connection
Measured current
Electrical connection
Leakage resistance
Housing
Cable entry
Installation length
Material
Protection type
Storage temperature
Installation
Standards
$-30 \ldots+150^{\circ} \mathrm{C}$
Pt100, Pt1000, Ni1000, NTC
2-wires
approx. 1 mA
Screw terminal block for wires up to $1,5 \mathrm{~mm}^{2}$
$>100 \mathrm{MOhm}$, at $+20^{\circ} \mathrm{C}(500 \mathrm{VDC})$
Polyamide (synthetic) with snap closing screws, colour RAL 9010
M16 high-strength cable gland with strain relief
from 100 to 400 mm
Protection tube: stainless steel AISI 316Ti
IP65
$-20 \ldots+70^{\circ} \mathrm{C}$
Mounting flange (included)
CE conformity, RoHS

Models	Type of sensor	Tube length (L)
SD1-100	Pt100 (DIN EN 60751 CI. B)	100 mm
SD1-150	Pt100 (DIN EN 60751 CI. B)	150 mm
SD1-200	Pt100 (DIN EN 60751 CI. B)	200 mm
SD1-400	Pt100 (DIN EN 60751 CI. B)	400 mm
SD2-100	Pt1000 (DIN EN 60751 CI. B)	100 mm
SD2-150	Pt1000 (DIN EN 60751 CI. B)	150 mm
SD2-200	Pt1000 (DIN EN 60751 CI. B)	200 mm
SD2-400	Pt1000 (DIN EN 60751 CI. B)	400 mm
SD3-100	Ni1000 (TK6180)	100 mm
SD3-150	Ni1000 (TK6180)	150 mm
SD3-200	Ni1000 (TK6180)	200 mm
SD3-400	Ni1000 (TK6180)	400 mm

Models	Type of sensor	Tube length (L)
SD4-100	Ni1000 (TK5000)	100 mm
SD4-150	Ni1000 (TK5000)	150 mm
SD4-200	Ni1000 (TK5000)	200 mm
SD4-400	Ni1000 (TK5000)	400 mm
SD5-100	NTC20k ($\pm 1 \%$)	100 mm
SD5-150	NTC20k ($\pm 1 \%$)	150 mm
SD5-200	NTC20k ($\pm 1 \%$)	200 mm
SD5-400	NTC20k ($\pm 1 \%$)	400 mm
SD6-100	NTC10k ($\pm 1 \%$) BETA 3435K	100 mm
SD6-150	NTC10k ($\pm 1 \%$) BETA 3435K	150 mm
SD6-200	NTC10k ($\pm 1 \%$) BETA 3435K	200 mm
SD6-400	NTC10k ($\pm 1 \%$) BETA 3435 K	400 mm

Electrical wirings

Dimensions (mm)

Description

The temperature sensor serie SI measures the temperature from -30 up to $+90^{\circ} \mathrm{C}$ at a max. pressure of 16 bar of gaseous and liquid media. The range is available with all type of current sensor elements. Brass immersion pockets are included and can be screw-in directly into tanks or pipes and can be easily and quickly be replaced in case of maintenance.

Technical specifications

Measurement range
Sensor
Type of connection
Measured current
Electrical connection
Leakage resistance
Housing
Cable entry
Immersion pocket
Max. pressure of pocket
Installation length
Protection type
Storage temperature
Installation
Standards
$-30 \ldots+150^{\circ} \mathrm{C}$
Pt100, Pt1000, Ni1000, NTC
2-wires
approx. 1 mA
Screw terminal block for wires up to $1,5 \mathrm{~mm}^{2}$
$>100 \mathrm{MOhm}$, at $+20^{\circ} \mathrm{C}(500 \mathrm{~V}$ DC)
Polyamide (synthetic) with snap closing screws, RAL 9010
M16 high-strength cable gland with strain relief
brass, nickel-plated, \varnothing ext. $8 \mathrm{~mm} / \varnothing$ int. $6,5 \mathrm{~mm}, \mathrm{R} 1 / 2^{\prime \prime}$ straight pipe thread
16 bar
from 100 to 400 mm
IP65
$-20 \ldots+70^{\circ} \mathrm{C}$
Immersion pocket
CE conformity, RoHS

Models	Type of sensor	Tube length (L)
SI1-100	Pt100 (DIN EN 60751 CI. B)	100 mm
SI1-150	Pt100 (DIN EN 60751 CI. B)	150 mm
SI1-200	Pt100 (DIN EN 60751 CI. B)	200 mm
SI1-400	Pt100 (DIN EN 60751 CI. B)	400 mm
SI2-100	Pt1000 (DIN EN 60751 CI. B)	100 mm
SI2-150	Pt1000 (DIN EN 60751 CI. B)	150 mm
SI2-200	Pt1000 (DIN EN 60751 CI. B)	200 mm
SI2-400	Pt1000 (DIN EN 60751 CI. B)	400 mm
SI3-100	Ni1000 (TK6180)	100 mm
SI3-150	Ni1000 (TK6180)	150 mm
SI3-200	Ni1000 (TK6180)	200 mm
SI3-400	Ni1000 (TK6180)	400 mm

Model	Type of sensor	Tube length (L)
SI4-100	Ni1000 (TK5000)	100 mm
SI4-150	Ni1000 (TK5000)	150 mm
SI4-200	Ni1000 (TK5000)	200 mm
SI4-400	Ni1000 (TK5000)	400 mm
SI5-100	NTC20k ($\pm 1 \%)$	100 mm
SI5-150	NTC20k ($\pm 1 \%)$	150 mm
SI5-200	NTC20k ($\pm 1 \%)$	200 mm
SI5-400	NTC20k ($\pm 1 \%)$	400 mm
SI6-100	NTC10k ($\pm 1 \%)$ BETA 3435K	100 mm
SI6-150	NTC10k ($\pm 1 \%)$ BETA 3435K	150 mm
SI6-200	NTC10k ($\pm 1 \%)$ BETA 3435K	200 mm
SI6-400	NTC10k ($\pm 1 \%)$ BETA 3435K	400 mm

Electrical wirings

Dimensions (mm)

Description

The room control unit SM has a temperature sensor for the remote measurement in domestic environments, offices, reception etc. and a setpoint control that limits the setting range to a predetermined value by the controller. It is available with occupancy button, LED and switch for fan speed.

Technical specifications

Sensor	NTC 10 kOhm
Power supply	$24 \mathrm{~V} \mathrm{AC/DC}$
Potentiometer	5 kOhm
Occupancy button	$10 \mathrm{~mA}, 35 \mathrm{~V}$ DC
Fan speed	5 selectable with slide switch
Electrical connection	screw terminals max. $1,5 \mathrm{~mm}^{2}$
Housing	ABS, colour white RAL 9010
Dimensions	$87,5 \times 87,5 \times 30 \mathrm{~mm}$
Weight	82 g
Protection type	IP 20
Working temperature	$0 \ldots+50^{\circ} \mathrm{C}$
Storage temperature	$-30 \ldots+60^{\circ} \mathrm{C}$
Standards	$\mathrm{CE}-\mathrm{conformity} RoHS$,

Model	Occupancy button	Green LED
SM5		
SM5T	\bullet	
SM5TL	\bullet	\bullet
SM5TLS	\bullet	\bullet

Electrical wirings

Dimensions (mm)

Resistance characteristics of temperature sensors

Temp. ${ }^{\circ} \mathrm{C}$	PT100 Ohm	PT1000 Ohm	Ni1000 TK6180 Ohm	Ni1000 TK5000 Ohm	NTC 10K Ohm BETA 3435K K Ohm	NTC 20K Ohm K Ohm	KTY81-110 Ohm	KTY81-121 Ohm
-50,00	80,31	803,10	743	791	330,92	1667,57	515,00	510,00
-40,00	84,27	842,70	791	831	189,67	813,44	567,00	562,00
-30,00	88,22	882,20	842	872	112,06	415,48	624,00	617,00
-20,00	92,16	921,60	893	914	68,16	221,30	684,00	677,00
-10,00	96,09	960,90	946	956	42,62	122,47	747,00	740,00
0,00	100,00	1000,00	1000	1000	27,35	70,20	815,00	807,00
10,00	103,90	1039,00	1056	1045	17,98	41,56	886,00	877,00
20,00	107,79	1077,90	1112	1091	12,09	25,35	961,00	951,00
25,00	109,74	1097,40	1141	1114	10,00	20,00	1000,00	990,00
30,00	111,67	1116,70	1171	1138	8,31	15,89	1040,00	1029,00
40,00	115,54	1155,40	1230	1186	5,82	10,21	1122,00	1111,00
50,00	119,40	1194,00	1291	1235	4,15	6,72	1209,00	1196,00
60,00	123,24	1232,40	1353	1285	3,01	4,52	1299,00	1286,00
70,00	127,07	1270,00	1417	1337	2,22	3,10	1392,00	1378,00
80,00	130,89	1308,90	1483	1390	1,66	2,12	1490,00	1475,00
90,00	134,70	1347,00	1549	1444	1,26	1,54	1591,00	1575,00
100,00	138,50	1385,00	1618	1500	0,97	1,12	1696,00	1679,00
110,00	142,29	1422,00	1688	1557	0,76	0,82	1805,00	1786,00
120,00	146,06	1460,60	1760	1615	0,59	0,61	1915,00	1896,00
130,00	149,82	1498,20	1883	1675		0,46	2023,00	2003,00
140,00	153,58	1535,80	1909	1737		0,35	2124,00	2103,00
150,00	157,31	1573,10	1987	1799		0,27	2211,00	2189,00

PRICES

The prices mentioned in our current price list are in Euro ($€$) do not include VAT and, even if confirmed, can be subject to variations due to increases in raw materials and labour costs. If the price is tied to parity between the Euro and a foreign currency, the rate of exchange value is specified by publication by the Banca d'Italia, as indicated in the „II Sole 24 Ore" daily newspaper. If the rate of exchange varies by more than 5%, we reserve the right to modify at any time our prices and the discounts applied to current orders. In such a case the buyer is entitled to withdraw immediately from the order.
The said prices do not include transport and insurance costs, im-port license expenses, customs charges, etc., and are considered chargeable to the Buyer.
Our quotations are not binding for the order; the Buyer accepts our delivery terms. After issuing our order acknowledgement, the order is confirmed.
Minimum ordering amount: $€ 250,00$ net (under this amount the price in force is not confirmed). Neutral products are supplied without a surcharge but minimum 50 pieces/part number.
Certificates of origin issued by Chamber of Commerce $€ 50,00$. Certificates legalized by foreign embassy min. $€ 250,00$.

PACKING

Packing is included in the sale price. Packing different from standard will be invoiced at cost (standard plastic pallets at $€ 20,00$ net each).

DOCUMENTS

We reserve rights on all documents referring to the products and/or made available with quotations, acknowledgements or on delivery. Such documents may neither be copied nor made available to third parties without our written agreement. They must be returned to us on request.

SHIPMENT

Shipment is ex our works, unless otherwise agreed.
As soon as the goods are handed over to the forwarder, all our obligations are considered fulfilled.
Therefore, all expenses and risks will be the Buyer's responsibility without any exceptions, even if the shipping charges are prepaid by us.
It is the Buyer's responsibility to insure the goods against damage and/or loss. We therefore cannot be held liable for damage and/or loss.
The shipping rates for Italy are at cost price, and we reserve the right to select the most suitable means of transport.
In case of payment by cash on delivery, the fees are always in-curried by us and debited to the Buyer.

DELIVERY TERMS

Delivery terms are indicative and are not binding. We cannot be held liable for any production or shipment delay, if such a delay is caused by one of the following
reasons: a commercial blockade, difficulties in obtaining raw materials and/or other circumstances beyond our control. In that case we do not accept any penalties and the Buyer renounces any claims for indemnity and/or reimbursement of damages.
We reserve the right to delivery the goods before the agreed date.

CLAIMS
Clams have to be brought to our attention within 8 days after the receipt of the goods, otherwise we will not accept the said claims. Claims do not authorise delays in payment or further price reductions. In case of packing received damaged, the Buyer must inform the forwarder immediately, and send a copy to us for information.

PAYMENT TERMS

Invoices are payable in the currency specified in the invoice.
Payments must be remitted within the agreed expiry data. We reserve ownership of the goods until the invoice and any accessory expenses have been fully paid. Failure by the Buyer to pay by the due date automatically gives rise to interest, giving us the right to deem the contract cancelled because of such failure, unless we prefer to ask for settlement of the amount due, by recourse to law if necessary, with bank interest and damages added. If the Buyer stops a payment, the outstanding amount becomes immediately due and we will file a petition for bankruptcy.
Interest on arrears: in the case of delayed payments, interest on arrears will be calculated at the rate of 7 (seven) points above the official rate of discount of the Banca d'Italia in force at the time such interest was applied.

WARRANTY

All the products supplied by us are guaranteed against construction faults or defects of material for 24 months from the date of delivery, the term by which we shall repair the faulty parts in order to restore correct operation of the appliances. We do not accept any responsibility for direct or indirect damage caused by the use of the said appliances. Any return of material must be requested from us in writing, must reach us free our works and will be re-turned ex our works.
The guarantee is restricted exclusively to the repair at our plant, of appliances acknowledged to be defective, whereas all other costs of transport or labor for technical operations on the appliances are charged to the Buyer. The guarantee is voided if the appliances are found to have been tampered with or dismantled.
If interventions on appliances not considered to be under guarantee are requested, we reserve the right to debit the Buyer for management of the return $€ 40,00$ spare parts, manpower etc. not included.

In the event of a dispute, the Buyer accepts that the Bolzano Court of Law is competent and accepts the laws in force in Italy.

эtec
Eatec srl a Socio Unico - Loc. Förche 20 - I-39040 Sciaves BZ
Tel. +39 0472055617 - Fax +39 0472089807 - info@eatec.it - www.eatec.it

[^0]: Quellenhof Luxury Resort LAZISE

[^1]: | 4 | Switching output (SO) |
 | :--- | :--- |
 | 3 | Ground (GND) |
 | 2 | Output signal $(0 \ldots 10 \mathrm{~V} / 4 \ldots 20 \mathrm{~mA})$ |
 | 1 | Supply voltage $(18 \ldots 30 \mathrm{VAC} / \mathrm{VDC})$ |

